Evaluating $\sum_{k=0}^{n}\binom{n}{k}\binom{k}{r}\binom{k}{s}(-1)^{k}$

binomial-coefficientscombinatoricssummation

So far I've been able to determine that if $n, r, s$ are nonnegative integers, then
$$ \sum_{k=0}^{n}\binom{n}{k}\binom{k}{r}\binom{k}{s}(-1)^{k} = \begin{cases}
0 &\qquad\text{ if } r+s < n, \\
\displaystyle (-1)^{n}\binom{n}{r} &\qquad\text{ if } r+s=n, \\
?? &\qquad\text{ if } r+s>n. \end{cases} $$

I am wondering if there is a way to give a "closed form answer" for the sum in the case where $r+s>n$. WolframAlpha doesn't seems to give me anything sensible. Any ideas would be appreciated.

Perhaps I should say that this sum closely resembles a somewhat known identity given by
$$ \sum_{k=0}^{n} \binom{n}{k}\binom{k}{r}x^{k} = x^{r}(1+x)^{n-r}\binom{n}{r}. $$
Plugging $x=1$ and $x=-1$ reduces this to some interesting looking identities involving binomial coefficients. However, the sum I'm trying to evaluate seems to be much harder to figure out.

Best Answer

Ok, I think I've found an answer along with a proof. I will go through a series of claims (of course there may be more efficient ways of going about this). The main result is in Claim 3.

Claim 1. For nonnegative integers $m, r, t$ we have $$ \sum_{j=0}^{m+t} \binom{m+t}{j}\binom{j+r}{t+r}(-1)^{j} = (-1)^{m+t}\binom{r}{m}. \tag*{$(1)$} $$

Proof. We proceed by Egorychev's method. We will use the fact that $$ \binom{j+r}{t+r} = \frac{1}{2\pi i}\oint \frac{(1+z)^{j+r}}{z^{t+r+1}} \, dz, $$ where the integral is a contour integral over a circle $|z|=\varepsilon$ for some $0<\varepsilon<\infty$. Using this fact, and interchanging the summation and integral signs when necessary, we have \begin{align*} \sum_{j=0}^{m+t} \binom{m+t}{j}\binom{j+r}{t+r}(-1)^{j} &= \sum_{j=0}^{m+t} \binom{m+t}{j} \left( \frac{1}{2\pi i}\oint \frac{(1+z)^{j+r}}{z^{t+r+1}} \, dz \right) (-1)^{j} \\[1.2ex] &= \frac{1}{2\pi i}\oint \; \sum_{j=0}^{m+t} \binom{m+t}{j} \frac{(1+z)^{j+r}}{z^{t+r+1}} (-1)^{j} \, dz \\[1.2ex] &= \frac{1}{2\pi i}\oint \frac{(1+z)^{r}}{z^{t+r+1}} \; \sum_{j=0}^{m+t} \binom{m+t}{j} (1+z)^{j} (-1)^{j} \, dz \\[1.2ex] &= \frac{1}{2\pi i}\oint \frac{(1+z)^{r}}{z^{t+r+1}} \; \sum_{j=0}^{m+t} \binom{m+t}{j} (-1-z)^{j} \, dz \\[1.2ex] &= \frac{1}{2\pi i}\oint \frac{(1+z)^{r}}{z^{t+r+1}} (1 - 1 - z)^{m+t} \, dz \\[1.2ex] &= \frac{1}{2\pi i}\oint \frac{(1+z)^{r}}{z^{t+r+1}} (-z)^{m+t} \, dz \\[1.2ex] &= \frac{1}{2\pi i}\oint \frac{(1+z)^{r}}{z^{r-m+1}} (-1)^{m+t} \, dz \\[1.2ex] &= (-1)^{m+t}\binom{r}{r-m} \\[1.2ex] &= (-1)^{m+t}\binom{r}{m}. \end{align*} $$\tag*{$\blacksquare$}$$

Claim 2. For nonnegative integers $n, r, s$ with $s\ge r$, we have $$ \sum_{k=0}^{n} \binom{n-r}{k-r}\binom{k}{s}(-1)^{k} = (-1)^{n}\binom{r}{n-s}. \tag*{$(2)$} $$

Proof. If $s > n$, then both sides of $(2)$ are clearly $0$, so for the proof let us assume $s\le n$. Take $m = n-s$ and $t = s-r$ and plug these into $(1)$. We obtain $$ \sum_{j=0}^{n-r} \binom{n-r}{j}\binom{j+r}{s}(-1)^{j} = (-1)^{n-r}\binom{r}{n-s}. $$ We can shift the summation index by taking $j = k-r$ (where $k$ is the new index). By doing this and then multiplying both sides by $(-1)^{r}$, we get $(2)$. $$\tag*{$\blacksquare$}$$

Claim 3. For nonnegative integers $n, r, s$, we have $$ \boxed{ \sum_{k=0}^{n}\binom{n}{k}\binom{k}{r}\binom{k}{s}(-1)^{k} = (-1)^{n}\binom{n}{n-r,\, n-s,\, r+s-n} } $$ where the RHS involves the multinomial coefficient.

Proof. Without loss of generality, assume $s\ge r$. Consider the fact that $$ \binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r} $$ and use this to obtain $$ \sum_{k=0}^{n}\binom{n}{k}\binom{k}{r}\binom{k}{s}(-1)^{k} = \binom{n}{r}\sum_{k=0}^{n} \binom{n-r}{k-r}\binom{k}{s}(-1)^{k}. $$ By Claim 2, we see that the RHS reduces to $$ \binom{n}{r}\cdot (-1)^{n}\binom{r}{n-s}. $$ This is then decomposed as \begin{align*} \binom{n}{r}\cdot (-1)^{n}\binom{r}{n-s} &= (-1)^{n} \frac{n!}{r!(n-r)!}\frac{r!}{(n-s)!(r-n+s)!} \\ &= (-1)^{n}\frac{n!}{(n-r)!(n-s)!(r+s-n)!}, \end{align*} and the fraction in the last expression can be identified as a multinomial coefficient, giving us $$ \sum_{k=0}^{n}\binom{n}{k}\binom{k}{r}\binom{k}{s}(-1)^{k} = (-1)^{n}\binom{n}{n-r,\, n-s,\, r+s-n} $$ as desired. $$\tag*{$\blacksquare$}$$

Related Question