Evaluating nascent delta function limit with principal value

cauchy-principal-valuecomplex-analysisdirac deltalimits

I strongly suspect, but am unable to prove, that the following limit holds (in the sense of distributions):

$$\lim_{t\to \infty} \frac{\exp(i \omega t) -1}{i\omega} = \pi \delta(\omega)+i\mathcal{P}\frac{1}{\omega}\tag{1}\label{eq}$$

where $\mathcal{P}$ is a Cauchy principal value operator. The first term is easy to see, since the real part $\sin(\omega t)/\omega$ is a nascent delta function. Note that this expression is very similar to the Sokhotski-Plemelj formula

$$\lim_{\epsilon\to 0}\frac{1}{\omega\pm i \epsilon}=\mp i\pi \delta(\omega)+\mathcal{P}\frac1\omega, $$
but this latter limit is easier to show.

How does one prove Eq. \ref{eq}, in particular the principal value term? The real reason I'm wondering is that I need to evaluate some more complicated limits, including

$$ \lim_{t\to \infty} \frac{\left(\exp(i \omega_1 t) -1\right)\left(\exp(-i\omega_2 t)-1\right)}{\omega_1 \omega_2}. $$

Here, the interesting case is $\omega_1=\pm \omega_2$. I originally believed

$$ \lim_{t\to \infty} \frac{\left(\exp(i \omega_1 t) -1\right)\left(\exp(-i\omega_2 t)-1\right)}{\omega_1 \omega_2} =\begin{cases}
\pi^2 \delta(\omega_1) \delta(\omega_2), \, \omega_1 \ne \omega_2 \\
2 \pi t \delta(\omega_1), \, \omega_1 = \omega_2.
\end{cases}, $$

but now I am convinced I am missing some principal value terms.

Best Answer

As a distribution, $\cos\omega t \to 0$ when $t \to \infty$ so $$ \omega \frac{\cos\omega t - 1}{\omega} = \cos\omega t - 1 \to 0 - 1 = -1 . $$

From this we can conclude that $$ \frac{\cos\omega t - 1}{\omega} \to -\mathcal{P}\frac{1}{\omega} + C \, \delta(\omega) $$ for some constant $C.$

But the left hand side is odd, so the right hand side must also be odd, which requires $C=0.$

Thus, $$ \frac{\cos\omega t - 1}{\omega} \to -\mathcal{P}\frac{1}{\omega} $$ and $$ \frac{\exp(i\omega t)-1}{i\omega} = -i\frac{\cos\omega t - 1}{\omega} + \frac{\sin\omega t}{\omega} \to i \, \mathcal{P}\frac{1}{\omega} + \pi\,\delta(\omega) . $$