Evaluating line integral using The Stokes’ Theorem

calculusmultivariable-calculusstokes-theoremsurface-integrals

I want to evaluate $$\oint_C (x-z) dx + (x + y) dy + (y+z) dz$$ where $C$ is the ellipse, in which the plane $z=y$ intersects the cylinder $x^2 + y^2 = 1$, oriented counterclockwise as viewed from above. However, solution is somehow wrong. First, I say that the integral equals to $$\oint_{C} \vec F \cdot dr =\int\int_{S} \nabla \times \vec F \cdot \hat n d\sigma $$ where $F= (x-z)\hat i + (x+y)\hat j + (y+z)\hat k$.

Then, I found $\nabla \times \vec F = \hat i – \hat j + \hat k$. Next, I wrote $$\hat n = \frac{\nabla f}{ |\nabla f|} = \frac{-\hat j + \hat k}{\sqrt{2}}$$ and $$d \sigma = \frac{|\nabla f|}{|\nabla f \cdot \hat n|}dxdy$$ where $f(x,y,z) = z-y$. Finally, I got $$\int\int_{S} \nabla \times \vec F \cdot \hat n d\sigma = \int\int_{x^2 +y^2 \le 1} (\hat i – \hat j + \hat k) \cdot (\frac{-\hat j + \hat k}{\sqrt{2}})dxdy = \int\int_{x^2 +y^2 \le 1} \frac{2}{\sqrt{2}} dxdy = \frac{2}{\sqrt{2}}\pi $$ but the solution must be just $2 \pi.$ Where is my mistake?

Best Answer

It should simply be,

$ \displaystyle \iint_S (\nabla \times \vec F) \cdot \hat n ~d\sigma = \iint_{x^2 + y^2 \leq 1} (\nabla \times \vec F) \cdot (\nabla f) ~ dA$

$ \displaystyle = \iint_{x^2 + y^2 \leq 1} (\hat i - \hat j + \hat k) \cdot (- \hat j + \hat k) ~dA = 2 \pi$

It is unnecessary to normalize the normal vector as $|\nabla f|$ cancels out. Note that $d\sigma = |\nabla f| ~dA$ where $d \sigma$ is the surface area element and $dA$ is the area element of the projection in xy-plane.

Related Question