Evaluating integral $\int_0^{\infty } \left(\coth x-\frac{1}{x}\right) \text{csch} \>x\, dx$

improper-integralsintegrationtrigonometric-integrals

I am having trouble evaluating the following integral:

$$\int_0^{\infty } \left(\coth (x)-\frac{1}{x}\right) \text{csch}(x) \, dx\tag{1}$$

Numerically the integral appears to evaluate to $\log 2$.

The Weierstrass substitution doesn't help me other than allow a series approximation to be calculated using Mathematica. The Weierstrass substitution results in

$$\frac{1}{2} \int_0^1 \left(\frac{1}{t^2}-\frac{1}{t \tanh ^{-1}(t)}+1\right) \, dt\tag{2}$$

Any ideas?

Incidentally there seem to be a sequence of such integrals with closed forms:

$$I_n=\int_0^{\infty } \left(\coth^n (x)-\frac{1}{x^n}\right) x^{n-1}\text{csch}(x) \, dx\tag{3}$$

Best Answer

Rewrite the integral as $$I=\int_0^{\infty } \left(\coth x-\frac{1}{x}\right) \text{csch}x\, dx = \int_0^{\infty } \frac{f(x)-f(\frac x2)}x dx $$

where $f(x) = \coth x - x \>\text{csch}^2x$. Then, apply the Frullani's theorem to obtain $$I= (f(0)-f(\infty))\ln\frac12=(0-1)\ln\frac12=\ln2 $$