Evaluating $\int_0^{\pi/2}\operatorname{arcsinh}(2\tan x)\,dx$

calculusimproper-integralsintegrationtrigonometric-integrals

How to prove $$\int_0^{\pi/2}\operatorname{arcsinh}(2\tan x) \, dx = \frac43G + \frac13\pi\ln\left(2+\sqrt3\right),$$where $G$ is Catalan's constant?

I have a premonition that this integral is related to $\Im\operatorname{Li}_2\left(2\pm\sqrt3\right)$.
Attempt
$$\int_0^{\pi/2}\operatorname{arcsinh}(2\tan x) \, dx \\ =\int_0^\infty\frac{\operatorname{arcsinh}(2x)}{1+x^2} \, dx\\
=2\int_0^\infty\frac{x\cosh x}{4+\sinh^2x} \, dx\\
=2\int_0^\infty\frac{x\cosh x}{3+\cosh^2x} \, dx\\
=2\int_0^\infty\sum_{n=0}^\infty x(-3)^n\cosh^{-2n-1}(x) \, dx$$

I failed to integrate $x\cosh^{-2n-1}(x)$. Mathematica returns a hypergeometric term while integrating it.

Best Answer

On the path of Kemono Chen...

\begin{align}J&=\int_0^{\pi/2}\operatorname{arcsinh}(2\tan x)dx\end{align}

Perform the change of variable $y=\operatorname{arcsinh}(2\tan x)$,

\begin{align}J&=\int_0^{+\infty}\frac{2x\cosh x}{4+\sinh^2 x}\,dx\\ &=\int_0^{+\infty}\frac{4x\left(\text{e}^{x}+\text{e}^{-x}\right)}{14+\text{e}^{2x}+\text{e}^{-2x}}\,dx\\ &=\int_0^{+\infty}\frac{4x\text{e}^{-x}\left(\text{e}^{2x}+1\right)}{14+\text{e}^{2x}+\text{e}^{-2x}}\,dx\\ \end{align}

Perform the change of variable $y=\text{e}^{-x}$,

\begin{align}J&=-\int_0^1 \frac{4\ln x\left(1+\frac{1}{x^2}\right)}{14+x^2+\frac{1}{x^2}}\\ &=-\int_0^1 \frac{4\ln x\left(1+x^2\right)}{x^4+14x^2+1}\\ &=\left[-\arctan\left(\frac{4x}{1-x^2}\right)\ln x\right]_0^1+\int_0^1 \frac{\arctan\left(\frac{4x}{1-x^2}\right)}{x}\,dx\\ &=\int_0^1 \frac{\arctan\left(\frac{4x}{1-x^2}\right)}{x}\,dx\\ &=\int_0^1 \frac{\arctan\left(\left(2+\sqrt{3}\right)x\right)}{x}\,dx+\int_0^1 \frac{\arctan\left(\left(2-\sqrt{3}\right)x\right)}{x}\,dx\\ \end{align}

In the first integral perform the change of variable $y=\left(2+\sqrt{3}\right)x$,

In the second integral perform the change of variable $y=\left(2-\sqrt{3}\right)x$,

\begin{align}J&=\int_0^{2+\sqrt{3}}\frac{\arctan x}{x}\,dx+\int_0^{2-\sqrt{3}}\frac{\arctan x}{x}\,dx\\ &=\Big[\arctan x\ln x\Big]_0^{2+\sqrt{3}}-\int_0^{2+\sqrt{3}}\frac{\ln x}{1+x^2}\,dx+\Big[\arctan x\ln x\Big]_0^{2-\sqrt{3}}-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\ &=\frac{5\pi}{12}\ln\left(2+\sqrt{3}\right)-\int_0^{2+\sqrt{3}}\frac{\ln x}{1+x^2}\,dx+\frac{\pi}{12}\ln\left(2-\sqrt{3}\right)-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\ &=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-\int_0^{2+\sqrt{3}}\frac{\ln x}{1+x^2}\,dx-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx \end{align}

In the first integral perform the change of variable $y=\dfrac{1}{x}$,

\begin{align}J&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)+\int_{2-\sqrt{3}}^{+\infty}\frac{\ln x}{1+x^2}\,dx-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\ &=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)+\int_0^{+\infty}\frac{\ln x}{1+x^2}\,dx-2\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\ &=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-2\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\ \end{align}

Perform the change of variable $y=\tan x$,

\begin{align}J&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-2\int_0^{\frac{\pi}{12}}\ln\left(\tan x\right)\,dx\\ \end{align}

It is well known that,

\begin{align} \int_0^{\frac{\pi}{12}}\ln\left(\tan x\right)\,dx=-\frac{2}{3}\text{G} \end{align}

(see: Integral: $\int_0^{\pi/12} \ln(\tan x)\,dx$ )

Thus,

\begin{align}J&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-2\times -\frac{2}{3}\text{G}\\ &=\boxed{\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)+\frac{4}{3}\text{G}} \end{align}

NB:

Observe that,

\begin{align}2-\sqrt{3}&=\frac{1}{2+\sqrt{3}}\\ \ln\left(2-\sqrt{3}\right)&=-\ln\left(2+\sqrt{3}\right)\\ \int_0^\infty \frac{\ln x}{1+x^2}\,dx&=0 \end{align} (perform the change of variable $y=\dfrac{1}{x}$ )