Evaluating $\int_0^\infty\operatorname{erfi}(x)e^{-x^2}\frac{dx}x$

calculusdefinite integralsintegrationspecial functions

I want to evaluate

$$I=\int_0^\infty\operatorname{erfi}(x)e^{-x^2}\frac{dx}x$$
where $\operatorname{erfi}(x)=\frac{2}{\sqrt\pi}\int_0^x e^{t^2}dt$.

I can only prove this integral converges.
Not-so-useful Attempt
Integrating by parts gives
$$I=\int_0^\infty-\frac{1}{\sqrt{\pi}}e^{x^2}\operatorname{Ei}(-x^2)dx$$
Substituting $x^2=t$ gives $$I=\int_0^\infty-\frac{1}{2\sqrt{\pi x}}e^{x}\operatorname{Ei}(-x)dx$$
where $\operatorname{Ei}$ is the exponential integral function.

Best Answer

Introduce $$ I(\lambda)=\int_0^\infty\mathrm{erfi}(\lambda x)\frac{\exp(-x^2)}{x}\,\mathrm{d}x $$ for $\lambda\in[0,1]$. Note that $I(\lambda)$ is continuous (and even real-analytic on $(0,1)$) and differentiating with respect to $\lambda$ under the integral sign, we have $$ I'(\lambda)=\frac{2}{\sqrt{\pi}}\int_0^\infty\exp(-(1-\lambda^2) x^2)\,\mathrm{d}x=\frac{1}{\sqrt{1-\lambda^2}} $$ for $\lambda\in (0,1)$. Furthermore, $I(0)=0$ and so $$ I=I(1)=\int_0^1\frac{1}{\sqrt{1-\lambda^2}}\,\mathrm{d}\lambda=\frac{\pi}{2} $$

Related Question