Evaluating $\int_{0}^{\infty} \left( \text{coth} (x) – x \text{csch}^2 (x) \right) \left( \ln \left( \frac{4 \pi^2}{x^2} + 1 \right) \right) \, dx$

calculusclosed-formcontour-integrationimproper-integralsintegration

How can the following improper integral be evaluated?

$$\int_{0}^{\infty} \left( \text{coth} (x) – x \text{csch}^2 (x) \right) \left( \ln \left( \frac{4 \pi^2}{x^2} + 1 \right) \right) \, dx$$

or alternatively:

$$\int_{0}^{\infty} \frac{x \text{coth} (x) – 1}{x^2 (2 \pi + i x)} \, dx$$
Note: I am only really interested in the imaginary component of the second integral.

I've attempted multiple methods, all of which seeming unsuccessful, however, I believe contour integration may be the solution to the second integral above, which would also easily allow me to get the integral I'm interested in.

Best Answer

Partial solution

We can present the second integral as a series (imaginary part of the integral forms a series) $$I= \int_{0}^{\infty} \frac{x \text{coth} (x) - 1}{x^2 (2 \pi + i x)} \, dx=\int_{0}^{\infty} \frac{(x \text{coth} (x) - 1)(2\pi-ix)}{x^2 ((2 \pi)^2 + x^2)} \, dx$$ $$x\coth x=1+2\sum_{k=1}^{\infty}\frac{x^2}{\pi^2k^2+x^2}$$

$$I=2\int_{0}^{\infty}dx\frac{2\pi-ix}{(2\pi)^2+x^2}\sum_{k=1}^{\infty}\frac{1}{\pi^2k^2+x^2}=\Re I+i\Im I=I_1+I_2$$ $$I_1=2\pi\int_{0}^{\infty} \frac{x \text{coth} (x) - 1}{x^2 (4 \pi^2 + x^2)}dx=4\pi\sum_{k=1}^{\infty}\int_{0}^{\infty}\frac{1}{(2\pi)^2+x^2}\frac{1}{\pi^2k^2+x^2}dx$$$$=4\pi\sum_{k=1}^{\infty}\int_{0}^{\infty}\Bigl(\frac{1}{(2\pi)^2+x^2}-\frac{1}{\pi^2k^2+x^2}\Bigr)\frac{dx}{\pi^2k^2-4\pi^2}$$ $$=4\pi\sum_{k=1}^{\infty}\frac{1}{\pi^2k^2-4\pi^2}\Bigl(\frac{1}{2\pi}-\frac{1}{\pi k}\Bigr)\frac{\pi}{2}=2\pi^2\sum_{k=1}^{\infty}\frac{1}{2\pi^2k(2\pi+\pi k)}=\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{1}{k(k+2)}$$ $$I_1=\frac{1}{2\pi}\sum_{k=1}^{\infty}\biggl(\frac{1}{k}-\frac{1}{k+2}\biggr)=\frac{3}{4\pi}$$ $$I_2=-2i\sum_{k=1}^{\infty}\int_{0}^{\infty}\frac{1}{(2\pi)^2+x^2}\,\frac{x}{\pi^2k^2+x^2}dx$$ For $k\neq2$ $$I_2=-2i\sum_{k\neq2}^{\infty}\lim_{N\to\infty}\int_{0}^{N}\Bigl(\frac{1}{(2\pi)^2+x^2}-\frac{1}{\pi^2k^2+x^2}\Bigr)\frac{xdx}{\pi^2k^2-4\pi^2}$$ $$=-2i\sum_{k\neq2}^{\infty}\lim_{N\to\infty}\int_{0}^{N}\Bigl(\frac{d(x^2)}{(2\pi)^2(1+\frac{x^2}{(2\pi)^2})}-\frac{d(x^2)}{(\pi k)^2(1+\frac{x^2}{(\pi k)^2})}\Bigr)\frac{1}{\pi^2k^2-4\pi^2}$$ $$=-\frac{4i}{\pi^2}\sum_{k\neq2}^{\infty}\frac{\log\bigl(\frac{k}{2}\bigr)}{k^2-4}$$ For $k=2$ $$I_2=-2i\int_{0}^{\infty}\frac{xdx}{((2\pi)^2+x^2)^2}=-i\int_{0}^{\infty}\frac{dt}{((2\pi)^2+t)^2}=-\frac{i}{4\pi^2}$$

$$I=I_1+I_2=\frac{3}{4\pi}-\frac{4i}{3\pi^2}\log2-\frac{i}{4\pi^2}-\frac{4i}{\pi^2}\sum_{k>2}^{\infty}\frac{\log\bigl(\frac{k}{2}\bigr)}{k^2-4}$$