Evaluating $\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x$ – Integration and Special Functions

alternative-proofharmonic-numbersintegrationsequences-and-seriesspecial functions

I was able to find

$$\int_0^{\frac{\pi}{2}}x^2 \cot x\ln(1-\sin x)\mathrm{d}x=-\frac14\sum_{n=1}^\infty\frac{4^n}{{2n\choose n}}\frac{H_{2n}}{n^3}$$
$$=5\operatorname{Li}_4\left(\frac12\right)-\frac{65}{32}\zeta(4)-2\ln^2(2)\zeta(2)+\frac5{24}\ln^4(2)$$

by converting it to the sum above then evaluating this sum but many integrals and sums were involved in the calculations.

Do you have a different idea to find this integral or its sum?

Best Answer

What's up Ali, it's been a while.

This is a solution for $\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\ln \left(1-\sin \left(x\right)\right)\:dx$.

Note that: $$\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\ln \left(1-\sin \left(x\right)\right)\:dx=4\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\arctan ^2\left(x\right)\ln \left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx,$$ so let's evaluate the integral on the right: $$\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\arctan ^2\left(x\right)\ln \left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx$$ $$=\frac{1}{12}\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\ln ^3\left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx-\frac{2}{3}\operatorname{\mathfrak{R}} \left\{\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\ln ^3\left(\frac{1-x}{1-ix}\right)\:dx\right\}$$ $$=-\frac{7}{12}\int _0^1\frac{\ln ^3\left(x\right)}{1-x}\:dx+\frac{2}{3}\operatorname{\mathfrak{R}} \left\{\int _0^1\frac{\left(1+i\right)\ln ^3\left(x\right)}{1-\left(1+i\right)x}\:dx\right\}+\frac{2}{3}\operatorname{\mathfrak{R}} \left\{\int _0^1\frac{\ln ^3\left(x\right)}{i+x}\:dx\right\}$$ $$=\frac{105}{32}\zeta \left(4\right)-4\operatorname{\mathfrak{R}} \left\{\operatorname{Li}_4\left(1+i\right)\right\}.$$ Using the value for that polylogarithm which is well-known we find that: $$\int _0^1\frac{1-x^2}{x\left(1+x^2\right)}\arctan ^2\left(x\right)\ln \left(\frac{\left(1-x\right)^2}{1+x^2}\right)\:dx=-\frac{65}{128}\zeta \left(4\right)+\frac{5}{4}\operatorname{Li}_4\left(\frac{1}{2}\right)-\frac{1}{2}\ln ^2\left(2\right)\zeta \left(2\right)+\frac{5}{96}\ln ^4\left(2\right),$$ multiplying that equation by $4$ leads us to the desired integral and series in a very simple and elegant way.