Definite Integral – Evaluating $\int_0^1 \int_0^1 \frac{\frac{\pi}{4} dx dy}{\sin(\frac{\pi}{4}(1+x+y))}$

definite integralsintegration

I'm hoping to evaluate the definite integral $$I = \int_0^1 \int_0^1 \frac{\frac{\pi}{4} dx dy}{\sin(\frac{\pi}{4}(1+x+y))}$$


This integral arose in an attempt to evaluate $\int_{0}^\infty \left( \frac{x-1}{\log(x)} \right)^2 \frac{dx}{1+x^4}$; these integrals are equal and I will accept an evaluation of either.

It is straightforward to directly perform the integral on one of the coordinates via the antiderivative $\int \csc(x) dx = -\log\left( |\cot(x) + \csc(x)|\right)$. I suspect that there may not be a nice evaluation of the integral on the remaining coordinate, but I'm still hopeful.


Spelling out the integration over the coordinate $x$, we have

$$
\begin{split}
I &= \int_0^1 dy [ -\log(\cot(\frac{\pi}{4}(1+x+y)+\csc(\frac{\pi}{4}(1+x+y)) )] \bigg|_{x=0}^{x=1} \\
&= \int_{0}^1 dy \log \left(\frac{\cot(\frac{\pi}{4}(1+y)) +\csc(\frac{\pi}{4}(1+y)) }{\cot(\frac{\pi}{4}(2+y)) +\csc(\frac{\pi}{4}(2+y))} \right)
\end{split}$$

Best Answer

Make the substitution $u = \frac{x+y}2$ and $v=\frac{x-y}2$. $$I=\frac{\pi}{2}\int_{0}^{\frac{1}{2}}\int_{-u}^u \frac{1}{\sin(\frac\pi4 (1+2u))}dvdu+\frac{\pi}{2}\int_{\frac12}^{1}\int_{u-1}^{1-u} \frac{1}{\sin(\frac\pi4 (1+2u))}dvdu$$ Performing the innermost integral is now trivial. $$I=\pi\int_{0}^{\frac{1}{2}} \frac{u}{\sin(\frac\pi4 (1+2u))}du+\pi\int_{\frac12}^{1} \frac{1-u}{\sin(\frac\pi4 (1+2u))}du$$ Now, we substitute $u\to 1-t$ on the second integral. $$I=\pi\int_{0}^{\frac{1}{2}} \frac{u}{\sin(\frac\pi4 (1+2u))}du+\pi\int_{0}^{\frac12} \frac{t}{\sin(\frac\pi4 (3-2t))}dt$$ By using the trig identity $\sin(\pi-\theta)=\sin(\theta)$, we can see the integrands are the same.

$$I=2\pi\int_{0}^{\frac{1}{2}} \frac{u}{\sin(\frac\pi4 (1+2u))}du$$ Now substitute $\theta =\frac\pi4 (1+2u)$ and split the resulitng integrals. $$I=\frac{8}{\pi}\int_{\frac\pi4}^{\frac\pi2}\frac{\theta}{\sin(\theta)}d\theta-2\int_{\frac\pi4}^{\frac\pi2}\frac{1}{\sin(\theta)}d\theta$$ The second term is elementary, equaling $2\ln(\sqrt2 -1)$. However, I doubt the first term has an elementary form. But there is something nice we can do to it. Perform the half angle substitution: $z=\tan(\frac\theta2)$. $$I=\frac{16}{\pi}\int_{\sqrt{2}-1}^{1}\frac{\arctan(z)}{z}dz +2\ln(\sqrt2 -1)$$

The antiderivative of $\frac{\arctan(z)}{z}$ is the inverse tangent integral and is known to be transcendental as it can be written in terms of the dilogarithm. In particular, it has a nice power series. $$\mathrm{T}(z) =\sum_{k=0}^\infty \frac{(-1)^kz^{2k+1}}{(2k+1)^2} = z-\frac{z^3}{3^2}+\frac{z^5}{5^2}-\frac{z^7}{7^2}\dots$$ Notice that $\mathrm{T}(1)$ is Catalan's constant $G$. Therfore, $$I = \frac{16}{\pi}G + 2\ln(\sqrt2 -1) - \sum_{k=0}^\infty \frac{(-1)^k(\sqrt2 -1)^{2k+1}}{(2k+1)^2}$$

Related Question