Evaluating $\int \frac{\cos x}{\sin^3x+\sin x}dx$

calculusindefinite-integralsintegrationtrigonometric-integrals

Given the function $$g(x)=\frac{\cos x}{\sin^3x+\sin x},$$ by letting $u=\sin x$, show that $$\int g(x) dx=\int\left(\frac{A}{u}+\frac{Bu+C}{u^2+1}\right)du$$ where $A,B$ and $C$ are constants. Hence, find $A,B$ and $C$. Hence, solve $\int g(x)dx$.

My attempt,
$$g(x)=\frac{\cos x}{\sin^2 x(\sin x+1)}$$

$$=\frac{\sqrt{1-u^2}}{u^2(u+1)}$$

I'm stuck here.

Best Answer

If you do $u=\sin x$, then you must also do $\mathrm du=\cos x\,\mathrm dx$. So$$\int\frac{\cos x}{\sin^3x+\sin x}\,\mathrm dx$$becomes$$\int\frac1{u^3+u}\,\mathrm du=\int\frac1{u(u^2+1)}\,\mathrm du.$$Can you take it from here?

Related Question