Calculus – How to Evaluate Infinite Summation Series

calculusdefinite integralslimitssequences-and-seriessummation

I was trying to solve the integral $\int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}}dx$ and I noticed I can do the following:

$$\int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}}dx=\int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}} \sec^2(x) -\int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}} \tan^2(x) dx $$ $$=\int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}} \sec^2(x) -\int_0 ^{\frac{\pi}{4}} \tan^{2+\frac{1}{2}}(x) \sec^2(x)dx + \int_0 ^{\frac{\pi}{4}} \tan^{4+\frac{1}{2}}(x) $$
continue with that and we will get $$\int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}}dx=\sum_{k=0}^n \left(\int_0 ^{\frac{\pi}{4}} \tan^{2k+\frac{1}{2}}(x) \sec^2(x)dx \right) + (-1)^{n+1}\int_0 ^{\frac{\pi}{4}} \tan^{2n+2+\frac{1}{2}}(x) dx$$
since for any converging positive sequence $a_n$ $(\sum a_k)^n >\sum (a_k ^n)$ $\int_0 ^{\frac{\pi}{4}} \tan^{n}(x) dx <\left( \int_0 ^{\frac{\pi}{4}} \tan(x) dx \right) ^n \to 0$
so we get
$$ \int_0 ^{\frac{\pi}{4}} \sqrt{\tan{x}}dx=2 \ \lim_{n \to \infty } \sum_{k=0} ^ n \frac{(-1)^k}{4k+3}=\frac{\pi +\ln{(3-2 \sqrt{2})}}{2 \sqrt{2}} $$

I don't know if my approach is correct or not but even if it is correct I am interested in finding out if there are any other more obvious ways to evaluate $ \sum\limits_{k=0} ^{\infty} \frac{(-1)^k}{4k+3}$ as my approach is very difficult to notice if try to solve $ \sum\limits_{k=0} ^{\infty} \frac{(-1)^k}{4k+3}$ without any mention of the integral.

another question can we generalise this result for all $m \in \mathbb{R}$ st $m>1$ $$ \int_0 ^{\frac{\pi}{4}} \left(\tan{x} \right)^{\frac{1}{m}} dx=m \ \sum_{k=0} ^ {\infty } \frac{(-1)^k}{2mk+m+1} $$

Best Answer

One way is to use the power series trick: For $1\leq m<n$, we have

\begin{align} S(m,n)&:=\sum_{k=0}^\infty\frac{(-1)^k}{nk+m}\\[.4em] &=\sum_{k=0}^\infty\int_0^1(-1)^kx^{nk+m-1}dx\\[.4em] &=\int_0^1x^{m-1}\sum_{k=0}^\infty(-x^n)^kdx\\[.4em] &=\int_0^1\frac{x^{m-1}}{x^n+1}dx. \end{align}

Now for your generalisation, taking $(m,n)=(m+1,2m)$ leads to

$$S(m+1,2m)=\int_0^1\frac{x^m}{x^{2m}+1}dx=\frac1m\int_0^{\pi/4}(\tan u)^\frac1mdu$$

where the second step is by the substitution $x=(\tan u)^\frac1m$.


If $1\leq m<n$ are integers, we can evaluate the integral using digamma function $\psi$, that is,

\begin{align} S(m,n)&=\frac1{2n}\left(\psi\left(\frac{m+n}{2n}\right)-\psi\left(\frac{m}{2n}\right)\right)\\ &=\frac\pi{2n}\csc\left(\frac{m\pi}n\right)+\frac2n\sum_{k=1}^{n-1}\ln\left(\csc\left(\frac{k\pi}{2n}\right)\right)\sin\left(\frac{mk\pi}n+\frac{k\pi}2\right)\sin\left(\frac{k\pi}2\right). \end{align}

For the first equality you can find a proof in this post, and for the second we use Gauss's digamma theorem with a few trig identities.