Evaluate $\sum_{k=1}^{\infty}\frac{B\left(k, \frac{1}{2}\right)}{(2k+1)^2}$, where $B(x, y)$ is the Beta function

beta functioncalculusintegrationsequences-and-series

I am trying to evaluate this sum:
$$\sum_{k=1}^{\infty}\frac{B\left(k, \frac{1}{2}\right)}{(2k+1)^2}$$ where $B(x, y)$ is the Beta function.
Checking with WolframAlpha gives beautiful result: $4-4G$ where $G$ is the Catalan constant.

I tried to use the integral definition of Beta function:
$$B\left(k, \frac{1}{2}\right)=\int_{0}^{1}x^{k-1}(1-x)^{\frac{-1}{2}}dx,$$ so $$\sum_{k=1}^{\infty}\frac{B(k, \frac{1}{2})}{(2k+1)^2}=\sum_{k=1}^{\infty}\frac{1}{(2k+1)^2}\int_{0}^{1}x^{k-1}(1-x)^{\frac{-1}{2}}dx.$$ After changing the order of summation and integration: $$\int_{0}^{1}\frac{1}{\sqrt{1-x}}dx\sum_{k=1}^{\infty}\frac{x^{k-1}}{(2k+1)^2}.$$ And getting stuck, because the latter summation will lead to Lerch transcendent: $$\int_{0}^{1}\frac{\Phi\left(x,2,\frac{3}{2}\right)}{4\sqrt{1-x}}dx.$$ And I don't know how to progress further.

Best Answer

Inspired by this answer, we write \begin{align}S&=\sum_{k\ge1}\frac{\operatorname B(k,1/2)}{(2k+1)^2}=\sum_{k\ge1}\frac{4^k}{k(2k+1)^2{2k\choose k}}=\sum_{k\ge1}\frac{\int_0^{\pi/2}\sin^{2k+1}x\,dx}{k(2k+1)}.\end{align} Notice that \begin{align}\sum_{k\ge1}\frac{x^{2k+1}}{k(2k+1)}&=\int_0^x\sum_{k\ge1}\frac{t^{2k}}k\,dt=-\int_0^x\log(1-t^2)\,dt\\&=2x-x\log(1-x^2)-2\operatorname{arctanh}x\end{align} through $\log(1-t^2)=\log(1-t)+\log(1+t)$, from which \begin{align}S&=\int_0^{\pi/2}\left(2\sin x-2\sin x\log\cos x-2\operatorname{arctanh}\sin x\right)\,dx\\&=2-2\int_0^1\log u\,du-2\int_0^{\pi/2}\log(\tan x+\sec x)\,dx\\&=4-4G.\end{align}

Related Question