Evaluate $\sum _{n=1}^{\infty }\left(\frac{H_n^2+H_n^{\left(2\right)}}{n}\right)^2$ in a particular way.

definite integralsharmonic-numbersintegrationreal-analysissequences-and-series

How to evaluate:
$$\sum _{n=1}^{\infty }\left(\frac{H_n^2+H_n^{\left(2\right)}}{n}\right)^2,$$
without splitting the expression into more sums.

Here $H_n^{\left(m\right)}=\sum _{k=1}^n\frac{1}{k^m}$ is the harmonic number of order $m$.

If one just wants to evaluate it if we split we have,
$$2\sum _{n=1}^{\infty }\frac{H_n^2H_n^{\left(2\right)}}{n^2}+\sum _{n=1}^{\infty }\frac{H_n^4}{n^2}+\sum _{n=1}^{\infty }\frac{\left(H_n^{\left(2\right)}\right)^2}{n^2},$$
Then making use of this results one only has to compute
$$\sum _{n=1}^{\infty }\frac{\left(H_n^{\left(2\right)}\right)^2}{n^2}$$

But I'd like to know if its possible to evaluate the series without splitting or expanding the terms.

Best Answer

To find the desired series we must first consider the following integral. $$\int _0^1\frac{\ln ^2\left(1-x\right)\operatorname{Li}_3\left(\frac{x}{x-1}\right)}{x}\:dx$$ To evaluate it one can make use of the following trilogarithm identity. $$\operatorname{Li}_3\left(\frac{x}{x-1}\right)=-\operatorname{Li}_3\left(x\right)-\operatorname{Li}_3\left(1-x\right)+\zeta \left(3\right)+\frac{1}{6}\ln ^3\left(1-x\right)$$ $$+\zeta \left(2\right)\ln \left(1-x\right)-\frac{1}{2}\ln \left(x\right)\ln ^2\left(1-x\right)$$ Using it on the previous integral yields: $$\int _0^1\frac{\ln ^2\left(1-x\right)\operatorname{Li}_3\left(\frac{x}{x-1}\right)}{x}\:dx=-\int _0^1\frac{\ln ^2\left(1-x\right)\operatorname{Li}_3\left(x\right)}{x}\:dx-\int _0^1\frac{\ln ^2\left(1-x\right)\operatorname{Li}_3\left(1-x\right)}{x}\:dx$$ $$+\zeta \left(3\right)\int _0^1\frac{\ln ^2\left(1-x\right)}{x}\:dx+\frac{1}{6}\int _0^1\frac{\ln ^5\left(1-x\right)}{x}\:dx+\zeta \left(2\right)\int _0^1\frac{\ln ^3\left(1-x\right)}{x}\:dx$$ $$-\frac{1}{2}\int _0^1\frac{\ln \left(x\right)\ln ^4\left(1-x\right)}{x}\:dx$$ $$=-\frac{81}{2}\zeta \left(6\right)+2\zeta ^2\left(3\right)+12\sum _{k=1}^{\infty }\frac{H_k}{k^5}-\sum _{k=1}^{\infty }\frac{H_k^2}{k^4}-\sum _{k=1}^{\infty }\frac{H_k^{\left(2\right)}}{k^4}-2\sum _{k=1}^{\infty }\frac{H_k^{\left(3\right)}}{k^3}$$ The series remaining can be calculated quite easily and a nice thing to know is that to evaluate them one does not have to cross paths with the series in the body of the OP.

Thus: $$\int _0^1\frac{\ln ^2\left(1-x\right)\operatorname{Li}_3\left(\frac{x}{x-1}\right)}{x}\:dx=-\frac{581}{24}\zeta \left(6\right)-4\zeta ^2\left(3\right)$$ Now what is left to do is to consider the following generating function. $$\sum _{k=1}^{\infty }\frac{x^{k-1}}{k}\left(H_k^2+H_k^{\left(2\right)}\right)=-2\frac{\operatorname{Li}_3\left(\frac{x}{x-1}\right)}{x}$$ Which can be found along other generating functions in the book (Almost) Impossible Integrals, Sums, and Series, page $\#285$.

Using it on the previously found integral means that, $$\int _0^1\frac{\ln ^2\left(1-x\right)\operatorname{Li}_3\left(\frac{x}{x-1}\right)}{x}\:dx=-\frac{1}{2}\sum _{k=1}^{\infty }\left(\frac{H_k^2+H_k^{\left(2\right)}}{k}\right)^2$$ Thus: $$\sum _{k=1}^{\infty }\left(\frac{H_k^2+H_k^{\left(2\right)}}{k}\right)^2=\frac{581}{12}\zeta \left(6\right)+8\zeta ^2\left(3\right)$$

Related Question