Evaluate $\lim\limits_{n\to\infty} \left(1+\frac{1}{n}\right)^{n^2}\cdot\left(1+\frac{1}{n+1}\right)^{-(n+1)^2}$ using the definition of $e$

calculuslimits

Evaluate $\lim\limits_{n\to\infty} \left(1+\frac{1}{n}\right)^{n^2}\cdot\left(1+\frac{1}{n+1}\right)^{-(n+1)^2}.$

I know that $e^x=\lim\limits_{n\to\infty}\left(1+\dfrac{x}{n}\right)^n,$ so I need to somehow convert the limits to this form. I also noticed that $\left(1+\frac{1}{n+1}\right)=\left(\frac{n+2}{n+1}\right)=\left(\frac{n(n+2)}{(n+1)^2}\right)\cdot\left(1+\frac{1}{n}\right).$

Thus, the limit can be rewritten as $$\lim\limits_{n\to\infty}\dfrac{\left(1+\frac{1}{n}\right)^{n^2}}{\left(1+\frac{1}{n}\right)^{(n+1)^2}}\cdot\left(\dfrac{(n+1)^2}{n(n+2)}\right)^{(n+1)^2}\\
=\lim\limits_{n\to\infty}\left(1+\dfrac{1}{n}\right)^{-2n}\cdot\left(1+\dfrac{1}{n}\right)^{-1}\cdot\left(1+\dfrac{1}{n^2+2n}\right)^{n^2+2n}\cdot\left(1+\dfrac{1}{n^2+2n}\right)$$

$$=\dfrac{1}{e^2}\cdot(1)\cdot e\cdot(1)=\dfrac{1}{e}$$

Best Answer

Your proof is nice, we have indeed

$$\left(1+\frac{1}{n}\right)^{n^2}\cdot\left(1+\frac{1}{n+1}\right)^{-(n+1)^2}=\\=\left(1+\frac{1}{n}\right)^{n^2}\cdot\left(1+\frac{1}{n+1}\right)^{-n^2}\cdot\left(1+\frac{1}{n+1}\right)^{-2n}\cdot\left(1+\frac{1}{n+1}\right)^{-1}=$$

$$=\left(\frac{(n+1)^2}{n(n+2)}\right)^{n^2}\cdot\left(1+\frac{1}{n+1}\right)^{-2n}\cdot\left(1+\frac{1}{n+1}\right)^{-1}=$$

$$=\left[\left(1+\frac{1}{n^2+2n}\right)^{n^2+2n}\right]^{\frac{n^2}{n^2+2n}}\cdot\left(1+\frac{1}{n+1}\right)^{-2n}\cdot\left(1+\frac{1}{n+1}\right)^{-1}\to e^1 \cdot e^{-2}\cdot 1 =\frac1e$$

Related Question