Evaluate $\lim\limits_{n\to \infty}\frac{1^p+3^p+\dots+(2n-1)^p}{n^{p+1}}$

calculuslimits

Evaluate
$\lim\limits_{n\to \infty}\frac{1^p+3^p+\dots+(2n-1)^p}{n^{p+1}}$ using Stolz-Cesaro theorem .
Now this is my attempt :$\lim\limits_{n\to \infty}\frac{1^p+3^p+\dots+(2n-1)^p+(2n)^p-1^p-3^p-\dots-(2n-1)^p}{(n+1)^{p+1}-n^{p+1}}$=$\lim\limits_{n\to \infty}\frac{(2n)^p}{(n+1)^{p+1}-n^{p+1}}$ (and now i was thinking to use the binomial theorem )
$\lim\limits_{n\to \infty}\frac{(2n)^p}{n^{p+1}+{p+1 \choose p}n^p+\dots+1-n^{p+1}}$,which will eventually lead to the answer : $\frac{2}{p+1}$ . Is this correct ?

Best Answer

Let $ n $ be a positive integer greater than $ 1 \cdot $

Since $ \sum\limits_{k=0}^{n-1}{\left(2k+1\right)^{p}}=\sum\limits_{k=1}^{2n}{k^{p}}-\sum\limits_{k=1}^{n}{\left(2k\right)^{p}}=\sum\limits_{k=1}^{n}{k^{p}}+\sum\limits_{k=n+1}^{2n}{k^{p}}-2^{p}\sum\limits_{k=1}^{n}{k^{p}}$ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\left(1-2^{p}\right)\sum\limits_{k=1}^{n}{k^{p}}+\sum\limits_{k=1}^{n}{\left(n+k\right)^{p}} \cdot $

We have : $ \frac{1}{n^{p+1}}\sum\limits_{k=0}^{n-1}{\left(2k+1\right)^{p}}=\left(1-2^{p}\right)\left(\frac{1}{n}\sum\limits_{k=1}^{n}{\left(\frac{k}{n}\right)^{p}}\right)+\frac{1}{n}\sum\limits_{k=1}^{n}{\left(1+\frac{k}{n}\right)^{p}}$

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underset{n\to +\infty}{\longrightarrow}\left(1-2^{p}\right)\int\limits_{0}^{1}{x^{p}\,\mathrm{d}x}+\int\limits_{0}^{1}{\left(1+x\right)^{p}\,\mathrm{d}x} $

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underset{n\to +\infty}{\longrightarrow}\frac{1-2^{p}}{p+1}+\frac{2^{p+1}-1}{p+1} $

$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{n^{p+1}}\sum\limits_{k=0}^{n-1}{\left(2k+1\right)^{p}}\underset{n\to +\infty}{\longrightarrow}\frac{2^{p}}{p+1} $

Related Question