Evaluate $\lim_{{n}\to\infty}{\sum_{{k}\leq{n}}{\left\lvert\frac{\sin{k}}{\ln{n^k}}\right\rvert}}$

analytic-number-theoryasymptoticscalculuslimitsreal-analysis

Show that $$\sum_{k=1}^n{\mspace{-2mu}\frac{\left\lvert\sin{k}\right\rvert}{k}}\sim\frac{2}{\pi}\mspace{-1.5mu}\sum_{k=1}^n{\mspace{-2mu}\frac{1}{\mspace{-1mu}k}}$$ as $n\to\infty$.

Alternatively, since $\displaystyle\frac{1}{\ln{x}}\mspace{-1.5mu}\int_0^x{\mspace{-2mu}\frac{\left\lvert\sin{t}\right\rvert}{t}\operatorname{d}\!t}$ converges to $\dfrac{2}{\pi}$ as $x\to{+\infty}$ and $\displaystyle\lim_{n\to\infty}{\frac{{\it{H}}_n}{\ln{n}}}=1$, how can we prove that $$\sum_{{1}\leq{n}\leq{\left\lfloor{x}\right\rfloor}}{\mspace{-2mu}\frac{\left\lvert\sin{n}\right\rvert}{n}}\sim\int_0^x{\mspace{-2mu}\frac{\left\lvert\sin{t}\right\rvert}{t}\operatorname*{d}\!t}$$ as $x\to{+\infty}$?

Some "similar" problems can be seen in many posts such as How can we prove that …, How to prove the convergence of the series? and How to find the limit….

Best Answer

If we compute the integrals over multiples of $\pi$, the result is $$I_k=\int_{2 \pi k}^{2 \pi (k+1)} \frac{| \sin (t)| }{t} \, dt=2\, \text{Si}(2(k+1) )-\text{Si}(2 k \pi )-\text{Si}(2 (k+1) \pi )$$

Using the asymptotics of the trigonometric integrals, $$I_k=\frac{2}{\pi k}-\frac{1}{\pi k^2}+\frac{3 \pi ^2-4}{4 \pi ^3 k^3}+\frac{12-5 \pi ^2}{8 \pi ^3 k^4}+\frac{48-36 \pi ^2+9 \pi ^4}{16 \pi ^5 k^5}+O\left(\frac{1}{k^6}\right)$$ The summation followed by the expansion of the generated generalized harmonic numbers gives

$$\sum_{k=1}^n I_k=C+\frac{2 }{\pi }\log (n)+\frac{2}{\pi n}-\frac{25 \pi ^2-12}{24 \pi ^3 n^2}+O\left(\frac{1}{n^3}\right)$$ where, for this level of expansion, $C \sim \frac 1 {20}$.

Related Question