Evaluate $\int\limits_0^{+\infty}\frac{e^{-ax^2}-e^{-bx^2}}{x}dx$

calculusimproper-integralsintegration

Evaluate the given integral using Frullani integral
$$
\int\limits_0^{+\infty}\frac{e^{-ax^2}-e^{-bx^2}}{x}dx
$$

The problem is I can't explicitly write out the function $f(x)$, since in the given integral, we have $f(ax)=e^{-ax^2}$ and the same for the variable $b$. I tried to define $a$ and $b$ as $a_0^2$ and $b_0^2$ respectively. But then I got another problem: determining whether the integral $\int\limits_0^{+\infty}\frac{dx}{e^{x^2}x}$ is convergent or not.
Perhaps there is an easier solution to this problem? I would appreciate it if someone pointed it out.

Best Answer

Write the integral as

$$I=\int\limits_0^{+\infty}\frac{e^{-ax^2}-e^{-bx^2}}{x}dx=\int\limits_0^{+\infty}\frac{e^{-(\sqrt{a}x)^2}-e^{-(\sqrt{b}x)^2}}{x}dx$$

Then, with $f(x)=e^{-x^2}$, apply the Frullani integral

$$I =\int\limits_0^{+\infty}\frac{f(\sqrt ax) -f(\sqrt bx)}{x}dx=[f(0)-f(\infty)]\ln \frac{\sqrt{b}}{\sqrt a}=\frac12\ln\frac ba$$