Evaluate integral using beta function

beta functionintegrationreal-analysis

I am using substitution to evaluate the following integral using definition of beta function
$$
\int_0^{\infty} [1-(1-\epsilon) e^{- \mu z}]^n \mu (1-\epsilon) e^{- \mu z} e^{\theta z} dz
$$

if I use the substitution $y=(1-\epsilon) e^{- \mu z}$ , then $z=-\frac{ \log \frac {y} {1-\epsilon}} {\mu}$ and the integral becomes
$$
\int_0^{1-\epsilon} [1-y]^n \left[\frac {y}{1-\epsilon} \right]^{1-\theta /\mu} dz
$$

how can I get rid of $1-\epsilon$ in the upper limit integral using substitution ?

Best Answer

The incomplete Beta function is defined $$ B(z;a,b)=\int_0^z u^{a-1}(1-u)^{b-1}du $$ therefore your integral is $$ B(1-\epsilon;2-\frac{\theta}{\mu},n+1) $$ If $\epsilon=0$ you have the normal Beta function composed of Gamma functions, $$ \frac{\Gamma (2-\frac{\theta}{\mu})\Gamma (n+1)}{\Gamma (3 +n-\frac{\theta}{\mu})} $$ To approximate the integral you can expand the incomplete Beta functions in powers of $(1-\epsilon)$ $$ B(1-\epsilon;2-\frac{\theta}{\mu},n+1)=(1-\epsilon)^{2-\frac{\theta}{\mu}}\sum_{k=0}^{\infty}\frac{(\frac{\theta}{\mu}-1)_k}{k!(n+k+1)}(1-\epsilon)^k $$where $(x)_k$ is the Pochhammer symbol.