Evaluate integral $\int (x^2-1)(x^3-3x)^{4/3} \mathop{dx}$

calculusindefinite-integralsintegration

How can I evaluate this integral $$\int (x^2-1)(x^3-3x)^{4/3} \mathop{dx}=\;\;?$$

My attempt:

I tried using substitution $x=\sec\theta$, $dx=\sec\theta\ \tan\theta d\theta$,

$$\int (\sec^2\theta-1)(\sec^3\theta-3\sec\theta)^{4/3}
\sec\theta\ \tan\theta d\theta $$

$$=\int \tan^2\theta \sec^4\theta(1-3\cos^2\theta)^{4/3} \sec\theta\ \tan\theta d\theta $$
$$=\int \tan^3\theta \sec^5\theta(1-3\cos^2\theta)^{4/3}\ d\theta $$

$$=\int\dfrac{ \sin^3\theta}{ \cos^8\theta}(1-3\cos^2\theta)^{4/3}\ d\theta $$

I can't see if this substitution will work or not. This has become so complicated.

Please help me solve this integral.

Best Answer

If you multiply and divide by $3$, you get $$ \int (x^2 -1)(x^3 - 3x)^{4/3}dx = \frac{1}{3}\int (3x^2-3)(x^3-3x)^{4/3} dx $$ changing variable to $u = x^3 - 3x$ you have $du = (3x^2 - 3x)dx$ so $$ \begin{split} \int (x^2 -1)(x^3 - 3x)^{4/3}dx &= \frac{1}{3}\int (3x^2-3)(x^3-3x)^{4/3} dx\cr &= \frac{1}{3} \int u^{4/3} du \cr &= \frac{1}{3} \times \frac{3u^{7/3}}{7} + C \cr &= \frac{1}{7} (x^3 - 3x)^{7/3} + C \cr \end{split} $$

Related Question