Evaluate $\int_{1}^{\sqrt{2}} \frac{x^4}{(x^2-1)^2+1}\,dx$

definite integralsintegration

Evaluate the integral:
$$\int_{1}^{\sqrt{2}} \frac{x^4}{(x^2-1)^2+1}\,dx$$

The denominator is irreducible, if I want to factorize and use partial fractions, it has to be in complex numbers and then as an indefinite integral, we get
$$x + \frac{\tan^{-1}\left(\displaystyle\frac{x}{\sqrt{-1 – i}}\right)}{\sqrt{-1 – i}} + \frac{\tan^{-1}\left(\displaystyle\frac{x}{\sqrt{-1 + i}}\right)}{\sqrt{-1 + i}}+C$$

But evaluating this from $1$ to $\sqrt{2}$ is another mess, keeping in mind the principal values. I also tried the substitution $x \mapsto \sqrt{x+1}$, which then becomes

$$\frac{1}{2}\int_{0}^1 \frac{(x+1)^{3/2}}{x^2+1}\,dx$$

I don't see where I can go from here. Another substitution of $x\mapsto \tan x$ also leads me nowhere.

Should I approach the problem in some other way?

Best Answer

Note \begin{align} I=&\int_{1}^{\sqrt{2}} \frac{x^4}{(x^2-1)^2+1}\,dx\\ = &\int_{1}^{\sqrt{2}} \left(1+\frac{2x^2-2}{x^4-2x^2+2}\right)\,dx\\ = &\sqrt2-1+\int_{1}^{\sqrt{2}} \frac{2-\frac2{x^2}}{x^2+\frac2{x^2}-2}dx\\ =& \sqrt2-1 + (1+\frac1{\sqrt2})I_1 + (1-\frac1{\sqrt2})I_2\tag1\\ \end{align}

where

\begin{align} I_1= \int_{1}^{\sqrt{2}} \frac{1-\frac{\sqrt2}{x^2}}{x^2+\frac2{x^2}-2}dx &=\int_{1}^{\sqrt{2}} \frac{d(x+\frac{\sqrt2}{x})}{(x+\frac{\sqrt2}x)^2-2(1+\sqrt2)}=0 \\ I_2= \int_{1}^{\sqrt{2}} \frac{1+\frac{\sqrt2}{x^2}}{x^2+\frac2{x^2}-2}dx &=\int_{1}^{\sqrt{2}} \frac{d(x-\frac{\sqrt2}{x})}{(x-\frac{\sqrt2}x)^2+2(\sqrt2-1)}\\ &=\sqrt{\frac2{\sqrt2-1}} \tan^{-1}\sqrt{\frac{\sqrt2-1}2} \end{align}

Plug $I_1$ and $I_2$ into (1) to obtain

$$I = \sqrt2-1 + \sqrt{\sqrt2-1}\tan^{-1}\sqrt{\frac{\sqrt2-1}2} $$