Evaluate $\int_0^\pi \left(\frac{\sin{2x}\sin{3x}\sin{5x}\sin{30x}}{\sin{x}\sin{6x}\sin{10x}\sin{15x}}\right)^2 dx$ – MIT Integration Bee 2023

definite integralsintegration

This is from the final round of MIT Integration Bee 2023.

$$\int_0^\pi \left(\frac{\sin({2x}) \sin({3x})\sin({5x})\sin({30x})}{\sin({x})\sin({6x})\sin({10x})\sin({15x})}\right)^2 dx$$

The given answer is $7\pi$.


I found a way to do it using contour integrals (see answer below), but this is not a calculation I can finish within 4 minutes (the time limit in the competition). I am still looking for other elegant methods, possibly without using contour integrals.

Best Answer

Let $f(x)$ denote the egregious fraction of sines inside the square. Writing $w = e^{2ix}$, we have

\begin{align*} f(x) &:= \frac{(\sin 2x)(\sin 3x)(\sin 5x)(\sin 30x)}{(\sin x)(\sin 6x)(\sin 10x)(\sin 15x)} \\ &= w^{-4} \underbrace{ \frac{(w^2 - 1)(w^3 - 1)(w^5 - 1)(w^{30} - 1)}{(w - 1)(w^6 - 1)(w^{10} - 1)(w^{15} - 1)} }_{=:g(w)}. \end{align*}

Writing the fraction part in the last line as $g(w)$, algebraic manipulation using the finite geometric series formula yields

\begin{align*} g(w) = \frac{(w + 1)(w^{15} + 1)}{(w^3 + 1)(w^5 + 1)} = \frac{w^{10} - w^5 + 1}{w^2 - w + 1} = w^8 + w^7 - w^5 - w^4 - w^3 + w + 1, \end{align*}

where we utilized the long division in the last step.1) Now, we write

$$ g(w) = \sum_{k\geq 0} a_k w^k $$

for simplicity. Then by noting that $f(x)$ is real-valued,

\begin{align*} \int_{0}^{\pi} f(x)^2 \, \mathrm{d}x &= \int_{0}^{\pi} f(x)\overline{f(x)} \, \mathrm{d}x \\ &= \int_{0}^{\pi} \left( e^{-8ix} g(e^{2ix}) \right) \overline{\left( e^{-8ix} g(e^{2ix}) \right)} \, \mathrm{d}x \\ &= \sum_{j,k} a_j \overline{a_k} \int_{0}^{\pi} e^{2ix(j-k)} \, \mathrm{d}x \\ &= \pi \sum_{k \geq 0} |a_k|^2 \\ &= 7\pi. \end{align*}


1) Alternatively, if OP is familiar with some abstract algebra, we can proceed as below:

\begin{align*} g(w) = \prod_{d \mid 30} (w^d - 1)^{\mu(30/d)} = \Phi_{30}(w) = w^8 + w^7 - w^5 - w^4 - w^3 + w + 1, \end{align*}

where $\mu$ is the Möbius function and $\Phi_n$ is the cyclotomic polynomial.