Evaluate $\int_0^{\pi/2} x^2\log(\sin x)\,dx$

definite integralsintegrationreal-analysistrigonometric-integrals

I am a high school student , I know how to evaluate $\int_0^{\pi/2} x\log(\sin x)\,dx$.
It would be great if someone can help me evaluating $\int_0^{\pi/2} x^2\log(\sin x)\,dx$ and tell me if this integral is elementary or non elementary .
I tried using the "a-x" property but it resulted in $0=0$

Best Answer

Using this, we have $$ \log(\sin(x))=-\log 2-\sum_{k=1}^{+\infty}\frac{\cos(2kx)}{k} $$ Therefore, $$ \int_0^{\pi/2}x^2\log(\sin x)dx=-\frac{\pi^3}{24}\log 2-\sum_{k=1}^{+\infty}\frac{1}{k}\int_0^{\pi/2}x^2\cos(2kx)dx $$ Using integration by parts, we have $$ \int_0^{\pi/2}x^2\cos(2kx)dx = \frac{(-1)^k\pi}{4k^2} $$ Thus, $$ \sum_{k=1}^{+\infty}\frac{1}{k}\int_0^{\pi/2}x^2\cos(2kx)dx=\frac{\pi}{4}\sum_{k=1}^{+\infty}\frac{(-1)^k}{k^3}=-\frac{\pi}{4}\eta(3)=-\frac{3\pi}{16}\zeta(3) $$ where $\eta$ is the Dirichlet eta function. Finally, $$ \int_0^{\pi/2}x^2\log(\sin x)dx=\frac{3\pi}{16}\zeta(3)-\frac{\pi^3}{24}\log 2 $$