Evaluate $\int_0^{\infty } \frac{\sinh (a x) \sinh (b x)}{(\cosh (a x)+\cos (t))^2} \, dx$

complex-analysisdefinite integralsintegration

Gradshteyn&Ryzhik $3.514.4$ states that
$$\int_0^{\infty } \frac{\sinh (a x) \sinh (b x)}{(\cosh (a x)+\cos (t))^2} \, dx=\frac{\pi b \csc (t) \csc \left(\frac{\pi b}{a}\right) \sin \left(\frac{b t}{a}\right)}{a^2}$$
Whenever $0<\left| b\right| <a,0<t<\pi$. My bet is on Feynman's trick or contour integration but haven't figure out the exact way. Any help will be appreciated!

Best Answer

Integration by parts (just to simplify the evaluation) gives $$\int_0^\infty\frac{\sinh ax\sinh bx}{(\cosh ax+\cos t)^2}\,dx=\frac{b}{a}\int_0^\infty\frac{\cosh bx\,dx}{\cosh ax+\cos t}.$$ This can be evaluated using the residue theorem. Consider $I_R=\displaystyle\int_{C_R}\frac{e^{bz}\,dz}{\cosh az-\cos t}$ where $C_R$ is the rectangular contour with vertices at $\pm R\pm i\pi/a$; the integrand has simple poles at $z=\pm it/a$, thus $$I_R=2\pi i\left(\operatorname*{Res}_{z=it/a}+\operatorname*{Res}_{z=-it/a}\right)\frac{e^{bz}}{\cosh az-\cos t}=\frac{4\pi i}{a}\frac{\sin(bt/a)}{\sin t},$$ and on the other hand, $\lim\limits_{R\to\infty}I_R$ is equal to $$\int_{-\infty}^\infty\frac{e^{b(x-i\pi/a)}\,dx}{-\cosh ax-\cos t}+\int_\infty^{-\infty}\frac{e^{b(x+i\pi/a)}\,dx}{-\cosh ax-\cos t}=4i\sin\frac{b\pi}{a}\int_0^\infty\frac{\cosh bx\,dx}{\cosh ax+\cos t}.$$