Evaluate $\int_0^{\infty } \Bigl( 2qe^{-x}-\frac{\sinh (q x)}{\sinh \left(\frac{x}{2}\right)} \Bigr) \frac{dx}x$

definite integralsgamma functionintegration

Gradshteyn&Ryzhik $3.554.5$ states that:
$$\int_0^{\infty } \frac1x \biggl( 2qe^{-x}-\frac{\sinh (q x)}{\sinh \left(\frac{x}{2}\right)} \biggr) \, dx=\log\bigl(\cos (\pi q) \bigr)+2 \log \left(\Gamma \bigl(q+\frac12 \bigr)\right)-\log (\pi )~, \quad q^2<\frac{1}{4}$$
It seems like to have sth to do with the Binet representation of log-gamma function, but I haven't figured out how to solve it. Any kind of help will be appreciated.

Best Answer

The formula of the question follows easily from Ramanujan's generalization of Frullani's integral. See 'The Quarterly Reports of S. Ramanujan,' American Mathematical Monthly, Vol. 90, #8 Oct 1983, p 505-516. I won't give the conditions, but state it to establish the notation. Let $$ f(x)-f(\infty)=\sum_{k=0}^\infty u(k)(-x)^k/k! \quad,\quad g(x)-g(\infty)=\sum_{k=0}^\infty v(k)(-x)^k/k!$$ $$ f(0)=g(0) \quad,\quad f(\infty)=g(\infty) $$ Then $$\int_0^\infty \frac{dx}{x} \big(f(ax) - g(bx) \big)= \big(f(0)-f(\infty) \big)\Big( \log{(b/a)} + \frac{d}{ds} \log{\Big(\frac{v(s)}{u(s)}\Big)}\Big|_{s=0} \Big) $$ For the OP's case, a=b=1, $f(x)=2qe^{-x} \implies u(k)=2q, \ f(0)=2q, f(\infty)=0.$ We will eventually show $$ (1) \quad g(x)=\frac{\sinh(q \ x)}{\sinh(x/2)} = -\sum_{n=0}^\infty \frac{(-x)^n}{n!} \ \cos(\pi \ n) \big( \zeta(-n, 1/2+q) - \zeta(-n, 1/2-q) \big)$$ where $\zeta(s,a)$ is the Hurwitz zeta function. Given (1), it is easy to see that $$ \frac{d}{ds} \log{v(s)} \big|_{s=0} = \frac{v'(0)}{v(0)} = -\frac{ \zeta'(0, 1/2+q)-\zeta'(0, 1/2-q)}{ \zeta(0, 1/2+q)-\zeta(0, 1/2-q) }$$ However, it is known that $$\zeta'(0,a)=\log(\Gamma(a)/\sqrt{2\pi}) \text{ and } \zeta(0,a)=-B_1(a)=1/2-a $$ where in the last formula the Hurwitz zeta has been connected to the Bernoulli polynomial by the formula $$ (2) \quad \zeta(-n,a) = -\frac{B_{n+1}(a)}{n+1}. $$ Doing the rest of the algebra results in the expression $$ (3) \quad \int_0^\infty \Big(2qe^{-x} - \frac{ \sinh(q \ x)}{\sinh{x/2} } \Big) \frac{dx}{x} = \log{\Gamma(1/2+q)} - \log{\Gamma(1/2-q)}. $$ To get it in the form of the OP's request, use the gamma-function reflection formula

$$ \Gamma(1/2-q)\Gamma(1/2+q) = \frac{\pi}{\cos{\pi q } } .$$

Now, to prove (1): $$ \frac{\sinh(q \ x)}{\sinh(x/2)} = \frac{e^{qx} - q^{-qx}}{e^{x/2}-e^{-x/2}} = \frac{1}{x}\Big( \frac{x}{e^x-1} \exp(x(1/2+q))+\frac{x}{e^x-1} \exp(x(1/2-q)) \Big) $$ Use the well-known generating function for Bernoulli polynomials, $$ \frac{\sinh(q \ x)}{\sinh(x/2)} =\frac{1}{x}\sum_{n=0}^\infty \frac{x^n}{n!} \Big( B_n(1/2+q) - B_n(1/2-q) \Big) =\sum_{n=0}^\infty \frac{x^n}{n!(n+1)} \Big( B_{n+1}(1/2+q) - B_{n+1}(1/2-q) \Big) $$ where in the second step we have re-indexed because $B_0(x)=1$ and the first term is thus zero. Then use (2) in the last formula to complete the proof of (1).