Evaluate $\int_{0}^{\frac{\pi}{4}} \sin\left(\arccos{\left(\frac{\cos{x + 5}}{1 + 2\cos{x}}\right)}\right) \,dx$

calculuscontest-mathdefinite integralsintegration

Evaluate the following integral $$\int_{0}^{\frac{\pi}{4}} \sin\left(\arccos{\left(\frac{\cos{x + 5}}{1 + 2\cos{x}}\right)}\right) \,dx$$

Working:

We get rid of the $\sin$ by considering the triangle. So, $$\sqrt{\left(1+2\cos(x)\right)^2 – \left( \cos(x) + 5 \right)^2}$$

Simplifying we get:
$$\sqrt{\left(1+2\cos(x)\right)^2 – \left( \cos(x) + 5 \right)^2} $$$$ = \sqrt{1 + 4\cos(x) + 4\cos^{2}(x) – \left(\cos^{2}(x) + 10\cos(x) + 25 \right)}$$$$ = \sqrt{3\cos^{2}(x) – 6\cos(x) -24}$$

So the problem transforms into $$\int_{0}^{\frac{\pi}{4}} \frac{\sqrt{3\cos^{2}(x) – 6\cos(x) -24}}{1 + 2\cos(x)} \,dx$$

I haven't figured out what to do from here, any help will be greatly appreciated.

Best Answer


Let $\mathcal{I}$ denote the value of the following definite integral:

$$\mathcal{I}:=\int_{0}^{\frac{\pi}{4}}\mathrm{d}x\,\sin{\left(\arccos{\left(\frac{5+\cos{\left(x\right)}}{1+2\cos{\left(x\right)}}\right)}\right)}\approx1.46165\,i.$$

As a commenter pointed out, the integral $\mathcal{I}$ can be evaluated in terms of standard elliptic integrals.


Observing that

$$\sin{\left(\arccos{\left(z\right)}\right)}=\sqrt{1-z^{2}}=i\sqrt{z^{2}-1};~~~\small{z\in\mathbb{R}},$$

and

$$-\frac{2\pi}{3}<x<\frac{2\pi}{3}\implies1<\frac{5+\cos{\left(x\right)}}{1+2\cos{\left(x\right)}},$$

we first reduce the integral to one with an algebraic integrand

$$\begin{align} \mathcal{I} &=\int_{0}^{\frac{\pi}{4}}\mathrm{d}x\,\sin{\left(\arccos{\left(\frac{5+\cos{\left(x\right)}}{1+2\cos{\left(x\right)}}\right)}\right)}\\ &=\int_{0}^{\frac{\pi}{4}}\mathrm{d}x\,\sqrt{1-\left[\frac{5+\cos{\left(x\right)}}{1+2\cos{\left(x\right)}}\right]^{2}}\\ &=i\int_{0}^{\frac{\pi}{4}}\mathrm{d}x\,\sqrt{\left[\frac{5+\cos{\left(x\right)}}{1+2\cos{\left(x\right)}}\right]^{2}-1}\\ &=i\int_{0}^{\frac{\pi}{4}}\mathrm{d}x\,\frac{\sqrt{\left[5+\cos{\left(x\right)}\right]^{2}-\left[1+2\cos{\left(x\right)}\right]^{2}}}{1+2\cos{\left(x\right)}}\\ &=i\int_{0}^{\frac{\pi}{4}}\mathrm{d}x\,\frac{\sqrt{\left[4-\cos{\left(x\right)}\right]\left[6+3\cos{\left(x\right)}\right]}}{1+2\cos{\left(x\right)}}\\ &=i\int_{\frac{1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{\sqrt{\left(4-y\right)\left(6+3y\right)}}{\left(1+2y\right)\sqrt{1-y^{2}}};~~~\small{\left[x=\arccos{\left(y\right)}\right]}\\ &=i\int_{\frac{1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{\sqrt{3\left(4-y\right)\left(2+y\right)}}{\left(1+2y\right)\sqrt{\left(1-y\right)\left(1+y\right)}}.\\ \end{align}$$

Then, after the right linear fractional transformations, we obtain

$$\begin{align} i^{-1}\mathcal{I} &=\int_{\frac{1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{\sqrt{3\left(4-y\right)\left(2+y\right)}}{\left(1+2y\right)\sqrt{\left(1-y\right)\left(1+y\right)}}\\ &=\int_{\frac{1}{\sqrt{2}}}^{1}\mathrm{d}y\,\frac{\sqrt{3\left(\frac{4-y}{2+y}\right)}}{\left(1+2y\right)\sqrt{\left(\frac{1+y}{2+y}\right)\left(\frac{1-y}{2+y}\right)}}\\ &=\int_{\frac{1+\sqrt{2}}{1+2\sqrt{2}}}^{\frac23}\mathrm{d}t\,\frac{\sqrt{3\left(5-6t\right)}}{\left(1-t\right)\left(3t-1\right)\sqrt{t\left(2-3t\right)}};~~~\small{\left[\frac{1+y}{2+y}=t\right]}\\ &=\int_{\frac{3+\sqrt{2}}{7}}^{\frac23}\mathrm{d}t\,\frac{3\left(5-6t\right)}{\left(1-t\right)\left(3t-1\right)\sqrt{3t\left(2-3t\right)\left(5-6t\right)}}\\ &=\int_{\frac{3+\sqrt{2}}{7}}^{\frac23}\mathrm{d}t\,\left[\frac{9}{\left(3t-1\right)}-\frac{1}{\left(1-t\right)}\right]\frac{3}{2\sqrt{3t\left(2-3t\right)\left(5-6t\right)}}\\ &=\int_{\frac{9+3\sqrt{2}}{14}}^{1}\mathrm{d}u\,\left[\frac{3}{\left(2u-1\right)}-\frac{1}{\left(3-2u\right)}\right]\frac{3}{2\sqrt{u\left(1-u\right)\left(5-4u\right)}};~~~\small{\left[t=\frac23u\right]}\\ &=\frac32\int_{\frac{35-15\sqrt{2}}{62}}^{0}\mathrm{d}v\,\frac{(-5)}{\left(5-4v\right)^{2}}\left[\frac{3}{\left(\frac{5-6v}{5-4v}\right)}-\frac{1}{\left(\frac{5-2v}{5-4v}\right)}\right]\frac{\left(5-4v\right)}{5\sqrt{v\left(\frac{1-v}{5-4v}\right)}};~~~\small{\left[u=\frac{5-5v}{5-4v}\right]}\\ &=\frac32\int_{0}^{\frac{35-15\sqrt{2}}{62}}\mathrm{d}v\,\left[\frac{3\left(5-4v\right)}{\left(5-6v\right)}-\frac{\left(5-4v\right)}{\left(5-2v\right)}\right]\frac{1}{\sqrt{v\left(1-v\right)\left(5-4v\right)}}\\ &=\frac32\int_{0}^{\frac{35-15\sqrt{2}}{62}}\mathrm{d}v\,\left[\frac{5}{\left(5-6v\right)}+\frac{5}{\left(5-2v\right)}\right]\frac{1}{\sqrt{v\left(1-v\right)\left(5-4v\right)}}\\ &=3\int_{0}^{\sqrt{\frac{35-15\sqrt{2}}{62}}}\mathrm{d}x\,\left[\frac{5}{\left(5-6x^{2}\right)}+\frac{5}{\left(5-2x^{2}\right)}\right]\frac{1}{\sqrt{\left(1-x^{2}\right)\left(5-4x^{2}\right)}};~~~\small{\left[v=x^{2}\right]}\\ &=\frac{3}{\sqrt{5}}\int_{0}^{\sqrt{\frac{35-15\sqrt{2}}{62}}}\mathrm{d}x\,\left[\frac{1}{\left(1-\frac65x^{2}\right)}+\frac{1}{\left(1-\frac25x^{2}\right)}\right]\frac{1}{\sqrt{\left(1-x^{2}\right)\left(1-\frac45x^{2}\right)}}\\ &=\frac{3}{\sqrt{5}}\left[\Pi{\left(\arcsin{\left(\sqrt{\frac{35-15\sqrt{2}}{62}}\right)},\frac65,\frac45\right)}+\Pi{\left(\arcsin{\left(\sqrt{\frac{35-15\sqrt{2}}{62}}\right)},\frac25,\frac45\right)}\right],\\ \end{align}$$

where $\Pi{(\varphi,n,k)}$ is defined for $0<\varphi<\frac{\pi}{2}\land0<k<1\land0<1-n\sin^{2}{\varphi}$ by

$$\Pi{\left(\varphi,n,k\right)}:=\int_{0}^{\sin{\varphi}}\mathrm{d}x\,\frac{1}{\left(1-nx^{2}\right)\sqrt{\left(1-x^{2}\right)\left(1-k^{2}x^{2}\right)}}.$$