Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{(1 + \sin^4(x))\sqrt{1+\sin^2(x)}}\, dx$

calculusdefinite integralsintegration

How would you calculate the integral without using identities involving integrals/hyper geometric functions?
\begin{align}
\int_{0}^{\frac{\pi}{2}} \frac{1}{(1 + \sin^4(x))\sqrt{1+\sin^2(x)}}\, dx
\end{align}

$(t = \sin(x))$, so $(dt = \cos(x) dx)$

$\int_{0}^{1} \frac{1}{(1 + t^4)\sqrt{1 + t^2}}, dt)$

$\sqrt{1 + t^2} = \sqrt{t^2(1 + t^{-2})} = |t|\sqrt{1 + t^{-2}})$

$\int_{0}^{1} \frac{1}{(1 + t^4)|t|\sqrt{1 + t^{-2}}}$

After some more substitution i got this
$\int_{0}^{\frac{1}{\sqrt{2}}} \frac{1}{u^3(1 + u)} $

But after evaluating the integral doesn't give me the answer that we needed

Best Answer

As @sudeep5221 commented, you missed a term when you used the first subtitution $$I=\int\frac{dx}{(1 + \sin^4(x))\sqrt{1+\sin^2(x)}}$$

$$t=\sin(x) \quad \implies I=\int\frac{dt}{ \left(1+t^4\right)\sqrt{1-t^4}}$$

There is an explicit solution but it involves either elliptic integrals or Appell hypergeometric functions of two variables.

Probably, for the time being, use a series expansion

$$\frac{1}{ \left(1+t^4\right)\sqrt{1-t^4}}=\sum_{n=0}^\infty(-1)^n\,\frac {a_n}{b_n} \, t^{4n}$$ where the $a_n$ and $b_n$ form respectively sequences $A123746$ and $A046161$ in $OEIS$.

The problem is that the convergence is extremely slow if you integrate termwise between $0$ and $1$.

Edit

Just to give an idea of the complexity of the result, the definite integral is $$-\sqrt{\pi }\,\,\frac{ \Gamma \left(\frac{5}{4}\right)}{\Gamma\left(-\frac{1}{4}\right)} \left(4+\frac{1+i}{2} B_{-1}\left(\frac{3}{4},\frac{1}{2}\right) \right)$$

Related Question