Evaluate $\int_0^{2\pi} \frac{2-\cos t}{(2\cos t-1)^2 + \sin^2 t} dt$

calculusdefinite integralsintegrationtrigonometric-integrals

\begin{align}
\int_0^{2\pi} \frac{2-\cos t}{(2\cos t-1)^2 + \sin^2t} dt
\end{align}

I am trying to evaluate above integral. The results is $2\pi$ according to Mathematica. I want to obtain this result by integrating properly

Can this integral be evaluated using simple trigometric identities?

Do I have to use complex analysis i.e., $\cos(\theta) = \frac{z+\frac{1}{z}}{2}$ and do residue calculus?

Best Answer

Rewrite

\begin{align} I=\int_0^{2\pi} \frac{2-\cos t}{(2\cos t-1)^2 + \sin^2t} dt = 2\int_0^{\pi} \frac{2-\cos t}{3\cos^2 t -4\cos t +2} dt \end{align}

and then substitute $\cos t = \frac{1-x^2}{1+x^2}$, along with $dt = \frac{2dx}{1+x^2}$

\begin{align} I= &\ 4\int_0^{\infty} \frac{1+3x^2}{9x^4 -2x^2 +1} dx \\ =&\ 4\int_0^{\infty} \frac{\frac{1}{x^2}+3}{9x^2 +\frac{1}{x^2}-2} dx =4\int_0^{\infty} \frac{d\left(3x-\frac{1}{x}\right)} {\left(3x-\frac{1}{x}\right)^2+4}\\ =&\ 2\tan^{-1}\left[\frac12\left(3x-\frac{1}{x}\right)\right]_0^{\infty}=2\pi \end{align}