Evaluate $\int_0^1\frac{\mathrm{e}^{12x}-\mathrm{e}^{-12x}}{\mathrm{e}^{12x}+\mathrm{e}^{-12x}}\,\mathrm{d}x$

calculusdefinite integralsintegration

My work so far

$${\displaystyle\int_0^1}\dfrac{\mathrm{e}^{12x}-\mathrm{e}^{-12x}}{\mathrm{e}^{12x}+\mathrm{e}^{-12x}}\,\mathrm{d}x$$

using substitution with $u=\mathrm{e}^{12x}+\mathrm{e}^{-12x}$

$$={\displaystyle\int}\dfrac{1}{12u}\,\mathrm{d}u$$

$$=\class{steps-node}{\cssId{steps-node-1}{\dfrac{1}{12}}}{\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u$$

$${\displaystyle\int}\dfrac{1}{u}\,\mathrm{d}u$$

which is the standard integral:

$$=\ln\left(u\right)$$

$$=\dfrac{\ln\left(u\right)}{12}$$

and using substitution with $u=\mathrm{e}^{12x}+\mathrm{e}^{-12x}$

$$=\dfrac{\ln\left(\mathrm{e}^{12x}+\mathrm{e}^{-12x}\right)}{12}+C$$

$$=\dfrac{\ln\left(\mathrm{e}^{-24}\left(\mathrm{e}^{24}+1\right)\right)}{12}-\dfrac{\ln\left(2\right)}{12}+1$$

which is rewritten as

$$\dfrac{\ln\left(\mathrm{e}^{-24}\left(\mathrm{e}^{24}+1\right)\right)-\ln\left(2\right)+12}{12}$$

Is my work correct so far? Also, I thought I was done at the last step, but I noticed this integral can be approximated to $0.9422377349564838$. How would I go about doing this part?

Best Answer

If you want to approximate this numerically, we'll have to resort to series

$$\frac{\log \cosh(12)}{12} = \frac{\log\left(\frac{e^{12}+e^{-12}}{2e^{12}}\right)+12}{12} \approx \frac{\log(1-\frac{1}{2})}{12}+1 \approx 1 - \frac{1}{24} - \frac{1}{96}= \frac{91}{96} \sim 0.948$$

You won't need to consider the $e^{-12}$ until you want around $8$ figures of precision.

Related Question