Evaluate $\int_{0}^{1} \! \frac{-\ln(1-t)}{t} \, \mathrm{d}t$ without using taylor series expansion

calculusgamma functionintegration

I want to prove the Basel Problem and I managed to turn it into an integral which I can't solve.
I am interested to know how it can be evaluated without using Taylor series expansions, perhaps with the use of special functions?

$$\int_{0}^{1} \! \frac{-\ln(1-t)}{t} \, \mathrm{d}t.$$

I tried using substitutions that can relate it to the Gamma or Beta function but I always hit a seemingly insurmountable roadblock.
I will highly appreciate a detailed answer. Thank you!

Best Answer

A similar problem and solution can be found here. Proposed by Khalef and solved by Sujee.

Since $\int_0^1 \frac{dx}{1+x^2}=\frac{\pi}{4}$, we have

$$\frac{\pi^2}{16}=\int_0^1\int_0^1\frac{dydx}{(1+x^2)(1+y^2)}\overset{t=xy}{=}\int_0^1\int_0^x\frac{dtdx}{x(1+x^2)(1+t^2/x^2)}$$

$$=\frac12\int_0^1\int_t^1\frac{dxdt}{x(1+x^2)(1+t^2/x^2)}\overset{x^2\to x}{=}\frac12\int_0^1\left(\int_{t^2}^1\frac{dx}{(1+x)(x+t^2)}\right)dt$$

$$=-\frac12\int_0^1\frac{\ln\left(\frac{4t^2}{(1+t^2)^2}\right)}{1-t^2}dt\overset{t=\frac{1-x}{1+x}}{=}-\frac12\int_0^1\frac{\ln\left(\frac{1-x^2}{1+x^2}\right)}{x}dx$$

$$\overset{x^2\to x}{=}-\frac14\int_0^1\frac{\ln\left(\frac{1-x}{1+x}\right)}{x}dx=-\frac14\int_0^1\frac{\ln\left(\frac{(1-x)^2}{1-x^2}\right)}{x}dx$$

$$=-\frac12\int_0^1\frac{\ln(1-x)}{x}dx+\frac14\underbrace{\int_0^1\frac{\ln(1-x^2)}{x}dx}_{x^2\to x}$$

$$=-\frac38\int_0^1\frac{\ln(1-x)}{x}dx\Longrightarrow \int_0^1\frac{-\ln(1-x)}{x}dx=\frac{\pi^2}{6}$$


Remark:

This solution can be considered a proof that $\zeta(2)=\frac{\pi^2}{6}$ as we have $\int_0^1\frac{-\ln(1-x)}{x}dx=\text{Li}_2(x)|_0^1=\text{Li}_2(1)=\zeta(2)$

Related Question