Evaluate $\int \frac{2x}{(1-x^2)\sqrt{x^4-1}}dx$

indefinite-integralsintegration

How do I evaluate $\int \frac{2x}{(1-x^2)\sqrt{x^4-1}}dx$ ?

Note that this is a Q&A post and I've presented my solution below.

Let $x=\sqrt{\sec({2\tan^{-1}}t)}$

$\Rightarrow dx=\frac{2\tan^{2}(2\tan^{-1}t)}{2(1+t^2)\sqrt{\sec(2tan^{-1}t)}}$

$\Rightarrow xdx=\frac{\tan^2(2\tan^{-1}t)}{1+t^2}$

Substituting in the original integral-
$$\Rightarrow \int \frac{2\tan^2(2\tan^{-1}t)}{(1+t^2)(1-\sec(2\tan^{-1}t))(\sqrt{\sec^2(2tan^{-1}t)-1})}dt$$
$$\Rightarrow \int \frac{2\tan(2\tan^{-1}t)}{(1+t^2)(1-\sec(2tan^{-1}t))}dt$$
$$\Rightarrow \int \frac{4t(1-t^2)}{(-2t^2)(1-t^4)}dt$$
$$\Rightarrow -2\int \frac{1}{t(1+t^2)}$$
$$\Rightarrow -2(\log t-\frac{1}{2}\log(t^2+1))$$

Best Answer

To evaluate $\int \frac{2x}{(1-x^2)\sqrt{x^4-1}}dx$

$\Rightarrow\int \frac{-2x}{(x^2-1)^{\frac{3}{2}}\sqrt{x^2+1}}dx$

Now, one substitution that works but is rather tricky to find is,

Let $u=\sqrt{\frac{x^2+1}{x^2-1}}$

$\Rightarrow \frac{1}{2}(\frac{x^2-1}{x^2+1})^{\frac{1}{2}} \frac{(x^2-1)2x-(x^2+1)2x}{(x^2-1)^2}dx=du$

$\Rightarrow (\frac{x^2-1}{x^2+1})^{\frac{1}{2}} \frac{-2x}{(x^2-1)^2}dx=du$

$\Rightarrow \frac{-2x}{(x^2-1)^{\frac{3}{2}}\sqrt{x^2+1}}dx=du$

The integral reduces to

$\int du=u+c=\sqrt{\frac{x^2+1}{x^2-1}}+c$

Thus $\int \frac{2x}{(1-x^2)\sqrt{x^4-1}}dx=\sqrt{\frac{x^2+1}{x^2-1}}+c$

Related Question