Evaluate $\int _0^{\frac{\pi }{2}}x\ln \left(\sin \left(x\right)\right)\:dx$

definite integralsintegrationreal-analysis

How can i evaluate $$\int _0^{\frac{\pi }{2}}x\ln \left(\sin \left(x\right)\right)\:dx$$
I started like this
$$\int _0^{\frac{\pi }{2}}x\ln \left(\sin \left(x\right)\right)\:dx=\frac{x^2\ln \left(\sin \left(x\right)\right)}{2}|^{\frac{\pi }{2}}_0-\frac{1}{2}\int _0^{\frac{\pi }{2}}x^2\cot \left(x\right)\:dx$$
but this way doesnt turn things any simpler, i also tried using the substitution $t=\tan \left(\frac{x}{2}\right)$ and got this,
$$4\int _0^{1}\arctan \left(t\right)\ln \left(\frac{2t}{1+t^2}\right)\:\frac{1}{1+t^2}\:dt$$
$$=4\ln \left(2\right)\int _0^{1}\frac{\arctan \left(t\right)}{1+t^2}\:dt+4\int _0^{1}\frac{\arctan \left(t\right)\ln \left(t\right)}{1+t^2}\:dt-4\int _0^{1}\frac{\arctan \left(t\right)\ln \left(1+t^2\right)}{1+t^2}\:dt$$
That first integral is very simple but the rest look very difficult, could you help me evaluate this one?

Best Answer

$$\int_0^{\pi/2}x\ln(\sin x)dx=\int_0^{\pi/2}x\left(-\ln2-\sum_{n=1}^\infty\frac{\cos(2nx)}{n}\right)dx$$

$$=-\frac{\pi^2}{8}\ln2-\sum_{n=1}^\infty\frac{1}{n}\int_0^{\pi/2}x\cos(2nx)dx$$

$$=-\frac{\pi^2}{8}\ln2-\sum_{n=1}^\infty\frac{1}{n}\left(\frac{\cos(n\pi)}{4n^2}+\frac{\pi\sin(n\pi)}{4n}-\frac{1}{4n^2}\right)$$

$$=-\frac{\pi^2}{8}\ln2-\sum_{n=1}^\infty\frac{1}{n}\left(\frac{(-1)^n}{4n^2}+\frac{0}{4n}-\frac{1}{4n^2}\right)$$

$$=-\frac{\pi^2}{8}\ln2-\frac14\text{Li}_3(-1)+\frac14\zeta(3)$$

$$=-\frac{\pi^2}{8}\ln2+\frac{7}{16}\zeta(3)$$


Bonus: With subbing $x\to \pi/2-x$ we have

$$\int_0^{\pi/2}x\ln(\cos x)dx=\int_0^{\pi/2}(\pi/2-x)\ln(\sin x)dx$$

$$=\frac{\pi}{2}\int_0^{\pi/2}\ln(\sin x)dx-\int_0^{\pi/2}x\ln(\sin x)dx$$

$$=\frac{\pi}{2}\left(-\frac{\pi}{2}\ln2\right)-\left(-\frac{\pi^2}{8}\ln2+\frac{7}{16}\zeta(3)\right)$$ $$=-\frac{\pi^2}{8}\ln(2)-\frac7{16}\zeta(3)$$

Or we can use the Fourier series of $\ \ln(\cos x)=-\ln2-\sum_{n=1}^\infty\frac{(-1)^n\cos(2nx)}{n}$.

Also by subtracting the two integrals gives

$$\int_0^{\pi/2}x\ln(\tan x)dx=\frac78\zeta(3)$$

Or we can use the Fourier series of $\ \ln(\tan x)=-2\sum_{n=1}^\infty\frac{\cos((4n-2)x)}{2n-1}.$