Evaluate $\int _0^1\frac{dx}{(e^x-1)^{1/3}}$

improper-integralsintegrationreal-analysis

Study the convergence of the following integral for $\alpha\in\mathbb{R}$ and evaluate it for $\alpha = \frac{1}{3}$ if it converges for that value.

$${\Large\int} _{0}^{1}\frac{dx}{(e^x-1)^{\alpha}} x$$

The integral converges for $\alpha \lt 1$, if I am not wrong, so I can evaluate:
$${\Large\int} _{0}^{1}\frac{dx}{(e^x-1)^{\frac{1}{3}}}$$

whose primitive, using some razionalizations and change of variables, is: $\frac{1}{2}\log|4(e^x-1)^\frac{2}{3}-4(e^x-1)^\frac{1}{3}+4|+\sqrt{3}\arctan\left(\frac{1}{\sqrt{3}}\left(2(e^x-1)^\frac{1}{3}-1\right)\right)-\log|(e^x-1)^\frac{1}{3}+1|+C$

Anyone knows if there is a less intricate way in order of obtain it than almost 3 sheet full of calculations? Thank you

Best Answer

$$\int_{0}^{1}\frac{dx}{\sqrt[3]{e^x-1}}\stackrel{x\mapsto \log t}{=}\int_{1}^{e}\frac{dt}{t\sqrt[3]{t-1}}\stackrel{t\mapsto s+1}{=}\int_{0}^{e-1}\frac{ds}{(s-1)\sqrt[3]{s}}\stackrel{s\mapsto u^3}{=}\int_{0}^{\sqrt[3]{e-1}}\frac{3u}{u^3-1}\,du$$ where $$ \frac{3u}{u^3-1} \stackrel{\text{Residues}}{=} \frac{1}{u-1}+\frac{1-u}{u^2+u+1} $$ and $$ \frac{1-u}{u^2+u+1} = \frac{4}{(2u+1)^2+3}-\frac{4u}{(2u+1)^2+3} $$ lead to the answer in less than a page. This is a trick you are probably going to apply many times: turn the integrand function into a rational function, then perform a partial fraction decomposition. Objects like $\frac{1}{(u+\alpha)^n}$ and $\frac{1}{(u^2+\alpha^2)^n}$ always have simple primitives, that's the core of symbolic integration algorithms.