Equation with Riemann zeta function and its derivative

complex-analysisriemann-zeta

In paper, there is an equation that involves Riemann zeta function and its derivative:

\begin{equation}
\frac{-\zeta'(\sigma)}{\zeta(\sigma) – 1} = k \quad\quad\quad\quad(1)
\end{equation}

where $\sigma$ denotes unique solution $\sigma > 1$, $k \in \mathbb{R}^+$. In the paper there is formula for calculation of $\sigma$:
\begin{equation}
\sigma = 1 + k + (1-\gamma)k^2 + …
\end{equation}

where $\gamma$ is the Euler–Mascheroni constant. I evaluated this in MATLAB and this seems to yield close enough results. However, I do not understand how to solve (1) for $\sigma$.

Best Answer

I think that you misread the equation. In the paper, the rhs is $\frac{\log (x)}{m}$ while the expansion at the top of page $85$ is in terms of $\frac m{\log (x)}$.

Anyway, considering $$-\frac{\zeta '(x)}{\zeta (x)-1}=k$$ around $x=1$, we have $$\zeta (x)=\frac{1}{x-1}+\gamma -\gamma _1 (x-1)+\frac{1}{2} \gamma _2 (x-1)^2+O\left((x-1)^3\right)$$ So, we know the expansion of $\zeta '(x)$ and lon division gives $$-\frac{\zeta '(x)}{\zeta (x)-1}=\frac{1}{x-1}+(1-\gamma )+$$ $$\left(2 \gamma _1+1-2 \gamma +\gamma ^2\right) (x-1)+$$ $$\left(2 \gamma _1+(1-\gamma ) \gamma _1-2 \gamma \gamma _1-\frac{3 \gamma _2}{2}+1-3 \gamma +3 \gamma ^2-\gamma ^3\right) (x-1)^2+O\left((x-1)^3\right)$$ which is quite good up to $x=5$.

Using series reversion (as @Gary commented) $$x=1+\frac{1}{k}+\frac{1-\gamma }{k^2}+\frac{2 \left(\gamma _1+1-2 \gamma +\gamma ^2\right)}{k^3}+O\left(\frac{1}{k^4}\right)$$

Edit

If I had to solve the equation for $x$, I would prefer to solve instead $$-\frac{\zeta (x)-1}{\zeta '(x)}=a \qquad \text{with} \qquad a=\frac 1k$$ which is much better conditioned.

A nonlinear regression gives (the coefficients were made rational), with $R^2 > 0.999999$, as an estimate, $$x_0=\frac{1-\frac{65 }{92}a-\frac{82 }{273}a^2+\frac{27 }{125}a^3} { 1-\frac{171 }{101}a+\frac{88 }{95}a^2-\frac{16 }{99}a^3}$$

Some results $$\left( \begin{array}{ccc} k & \text{estimate} & \text{solution} \\ 1 & 2.91932 & 2.91746 \\ 2 & 1.64084 & 1.64232 \\ 3 & 1.38780 & 1.38992 \\ 4 & 1.27823 & 1.28026 \\ 5 & 1.21697 & 1.21881 \\ 6 & 1.17784 & 1.17949 \\ 7 & 1.15067 & 1.15216 \\ 8 & 1.13070 & 1.13205 \\ 9 & 1.11541 & 1.11664 \\ 10 & 1.10332 & 1.10445 \end{array} \right)$$

Update

Another possible solution is to build the $[3,3]$ Padé approximant around $x=1$ and, making all coefficients rational have $$f(x)=-\frac{\zeta (x)-1}{\zeta '(x)}\sim \frac {t+\frac{157 }{1308}t^2+\frac{2 }{309}t^3} {1+\frac{260 }{479}t+\frac{29 }{321}t^2+\frac{1}{224}t^3}=g(x)\qquad \text{where} \qquad t=x-1$$ which is quite good for $1 \leq x \leq 20$. To give an idea $$\Phi=\int_0^{10} \Big[f(x)-g(x)\Big]^2\,dx=6.35 \times 10^{-6}$$ $$\Phi=\int_0^{20} \Big[f(x)-g(x)\Big]^2\,dx=4.56 \times 10^{-4}$$

Using $g(x)$, we then just need to solve the cubic equation in $t$ $$-1+\left(k-\frac{260}{479}\right) t+\left(\frac{157 k}{1308}-\frac{29}{321}\right) t^2+\left(\frac{2 k}{309}-\frac{1}{224}\right) t^3=0$$ The discriminant is always negative and using the hyperbolic method, we have the explicit solution for $t(k)$.

Repeating the same calculations as above

$$\left( \begin{array}{ccc} k & \text{estimate} & \text{solution} \\ 1 & 2.91750 & 2.91746 \\ 2 & 1.64232 & 1.64232 \\ 3 & 1.38992 & 1.38992 \\ 4 & 1.28026 & 1.28026 \\ 5 & 1.21881 & 1.21881 \\ 6 & 1.17949 & 1.17949 \\ 7 & 1.15216 & 1.15216 \\ 8 & 1.13205 & 1.13205 \\ 9 & 1.11664 & 1.11664 \\ 10 & 1.10445 & 1.10445 \end{array} \right)$$