$\epsilon – \delta$ definition of limit vs left and right hand definition of limit.

limitsreal-analysis

We initially learned in calculus that the limit of a function $f(x)$ at a point $x=c$ exists iff $$\lim\limits_{x \rightarrow c^+} f(x) = \lim\limits_{x \rightarrow c^-} f(x)$$
So what's not so rigorous about this definition that we are introduced to the new $\epsilon – \delta$ definition of limits in real analysis?

Best Answer

If $f\colon A\subset\mathbb{R}\to \mathbb{R}$, you have that $\lim_{x\to c}f(x)=l$ iff $\lim_{x\to c^{-}}f(x)=\lim_{x\to c^{+}}f(x)$.

Now, you defined $\lim_{x\to {c^{-}}}f(x)=l$ as: $(\forall \varepsilon>0)( \exists \delta_{1}>0)(\forall x\in A)(-\delta_{1}<x-c<0\Rightarrow |f(x)-l|<\varepsilon)$

analogously you define the limit to the right, and with these two definitions you show that $\lim_{x\to c}f(x)=l$

Related Question