Linear Algebra – Enhanced Nesbitt’s Inequality with Geometric Mean

a.m.-g.m.-inequalitycauchy-schwarz-inequalityinequalitylinear algebra

If a, b, c are positive real numbers such that $a + b + c = 1$, then how do you prove that $$\frac{a} {b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{3}{2} \sqrt[3]{abc} \ge {2}.$$

Here is my proof attempt:

$$\frac{a} {b+c}+\frac{b}{c+a}+\frac{c}{a+b} = \frac{a^2} {a(b+c)}+\frac{b^2}{b(c+a)}+\frac{c^2}{c(a+b)}$$

By Cauchy-Schwarz inequality, we have

$$\frac{a^2} {a(b+c)}+\frac{b^2}{b(c+a)}+\frac{c^2}{c(a+b)} \ge \frac{(a+b+c)^2} {2(ab +bc + ca)}.$$

Since $a + b + c = 1$, this reduces to

$$\frac{a^2} {a(b+c)}+\frac{b^2}{b(c+a)}+\frac{c^2}{c(a+b)} \ge \frac{1} {2(ab +bc + ca)}.$$

And by GM – HM inequality, we have

$$\sqrt[3] {abc} \ge \frac{3abc} {ab + bc + ca}.$$

Combining these inequalities, we get

$$\frac{a} {b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{3}{2} \sqrt[3]{abc} \ge \frac{1}{2(ab+bc+ca)}+\frac{3} {2}\frac{3abc} {(ab+bc+ca)} = \frac{1+9abc} {2(ab+bc+ca)}.$$

Now, $2(ab+bc+ca)= (a+b+c)^2 – (a^2 + b^2 + c^2) = 1 – (a^2 + b^2 + c^2)$, since $a + b + c = 1$.

This implies

$$\frac{1+9abc} {2(ab+bc+ca)} = \frac{1 + 9abc} {1-(a^2 + b^2 + c^2)}.$$

We know that $$(a^2+b^2+c^2) \ge \frac{(a+b+c)^2} {3} = \frac{1} {3}.$$

Using this result, we have

$$ \frac{1 + 9abc} {1 – (a^2 + b^2 + c^2)} \ge \frac{1+9abc} {1 – \frac{1} {3}} = \frac{1+9abc} {\frac{2} {3}} = \frac{3} {2} + \frac{27} {2} abc$$

which gives us

$$\frac{a} {b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{3}{2} \sqrt[3]{abc} \ge \frac{3} {2} + \frac{27} {2} abc.$$

The $\frac{3} {2}$ term on the RHS represents the value you see in Nesbitt's inequality. The equality holds when $a = b = c = \frac{1} {3}$, but to prove that the LHS is $\ge 2$ for all values of a, b, c in the open interval (0, 1), we should have $abc \ge \frac{1} {27}$, which is clearly not true because $\max {abc} = \frac{1} {27}$, so the proof is incomplete.

Is there another way to prove this inequality?

Best Answer

Proceeding along OP's lines.

It suffices to prove that $$\frac{1+9abc} {2(ab+bc+ca)} \ge 2$$ or $$1 + 9abc - 4(ab + bc + ca) \ge 0$$ or $$(a + b + c)^3 + 9abc - 4(ab + bc + ca)(a + b + c) \ge 0$$ which is degree three Schur i.e. $a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b) \ge 0$.