Eigenvalues for discrete second derivative with periodic boundary conditions

circulant-matriceseigenvalues-eigenvectorsfinite differenceslinear algebrarecurrence-relations

This wikipedia page https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors_of_the_second_derivative for the discrete second derivative ivative says that the eigenvalue problem $v_{k+1}-2v_k+v_{k-1}=\lambda v_k$ in the case of periodic boundary conditions $v_0=v_n$ ($k=1,\ldots,n$) has eigenvalues $$
\lambda_j=\begin{cases}-4\sin^2\left(\frac{\mathrm{\pi}(j-1)}{2n}\right) & j~\text{odd},\\-4\sin^2\left(\frac{\mathrm{\pi}j}{2n}\right)&j~\text{even}.\end{cases}
$$

How is this derived, or is there a reference anywhere? I wrote down the corresponding equations as:
\begin{align*}
-(2+\lambda_1)v_1+v_2+v_N &= 0, \\
v_{j-1}-(2+\lambda_j)v_j + v_{j+1} &= 0,\quad j=2,\ldots,N-1, \\
v_1+v_{N-1}-(2+\lambda_N)v_N &= 0.
\end{align*}

but how to actually solve this system of difference equations is not so clear to me.

Best Answer

Great question!

Actually, solving the eigenvalue for circular boundary condition is surprisingly tractable. Consider the matrix $$ \begin{bmatrix} -2 & 1 & 0 &0 &...&1\\ 1 & -2 & 1 & 0&... &0\\ 0&1 & -2 & 1&... &0\\ &&&&...\\ 0&0 & 0 & 0&... &1\\ 1&0 & 0 & 0&... &-2\\ \end{bmatrix} $$ It's a circulant matrix, which could be diagonalized by a Discrete Fourier Transform matrix. Generally, if $$ C=\begin{bmatrix} c_0 & c_{n-1} & c_{n-2} & ... & c_2 & c_1\\ c_1 & c_{0} & c_{n-1} & ...& c_3 & c_2\\ &&...&&\\ c_{n-2} & c_{n-3} & c_{n-4} & ...& c_0& c_{n-1}\\ c_{n-1} & c_{n-2} & c_{n-3} & ... & c_1&c_0\\ \end{bmatrix} $$ Then, with $\omega = e^{2\pi i/n}$ $$ v_j=[1,\omega^j,\omega^{2j},...\omega^{(n-1)j}]^T\\ \lambda_j = c_0+c_1 \omega^j+c_2 \omega^{2j}+ ... + c_{n-1}\omega^{(n-1)j} $$ In this case, $c_0=-2,c_1=1,c_{n-1}=1$, then we can directly compute each eigenvalue $j=0,1,...n-1$ $$ \lambda_j = -2+\omega^j+\omega^{-j} $$ Then use the basic formula for $\cos$ double angle. $$ \lambda_j = -2+e^{2j\pi i/n}+e^{-2j\pi i/n}\\ =-2+2\cos(\frac{2\pi j}{n})\\ =-4\sin^2(\frac{\pi j}{n}) $$


Note that this looks different from your answer, but they are the same set of eigenvalues. Notice that $$ \sin^2(\frac{\pi j}{n})=\sin^2(\frac{\pi (n-j)}{n}) \text{ for } j=1,2...n-1 $$ So any $\lambda_j,j\neq0$ has multiplicity 2, $\lambda_0=0$ has multiplicity 1; if $n$ is even, $\lambda_{n/2}=-4$ has multiplicity 1 too.

So if you sort and re-oder the eigenvalues, they will be the same as your answer.

Related Question