Double sum of a triple-product of binomial coefficients geometric series

binomial-coefficientscatalan-numbersgeometric series

My main challenge is to perform the double summation,

$$\sum\limits_{\substack{i+j\geq2\\ i+j \text{ even}\\i,j\geq0}}\binom{-5/2}{i}\binom{i+j}{(i+j)/2-1}\binom{1/2}{j}x^{i+j}$$

Letting $i+j=2k: k\geq1,i,j\geq0$, the summation splits into,

$$\sum\limits_{i=0}^{\infty}\binom{-5/2}{i}\sum\limits_{k=\lceil \frac{i+1}{2}\rceil}^{\infty}\binom{2k}{k-1}\binom{1/2}{2k-i}x^{2k}\\=\sum\limits_{i=0}^{\infty}\binom{-5/2}{i}(-1)^{1-i}2^{i+1}\sum\limits_{k=\lceil \frac{i+1}{2}\rceil}^{\infty}kC_{2k-i-1}C_ky^{2k}$$

where $y=x/4$ and $C_k$ is the $k^{th}$ Catalan number
$$C_k = \frac{1}{k+1}\binom{2k}{k}.$$

I have had little luck trying to perform the sum $$\sum\limits_{k=\lceil \frac{i+1}{2}\rceil}^{\infty}kC_{2k-i-1}C_ky^{2k}$$ I have tried using the Catalan number generating function to no avail. The generating function, $C(x)$, being,
$$C(x) = \frac{2}{1+\sqrt{1-4x}}=\sum\limits_{n=0}^{\infty}C_nx^n$$

Any help or suggestions would be much appreciated.

Best Answer

The idea of $i+j=2k$ is good with the inner summation over $i$: the given sum is $$F(x):=\sum_{k=1}^{\infty}\binom{2k}{k-1}x^{2k}\sum_{i=0}^{2k}\binom{-5/2}{i}\binom{1/2}{2k-i},$$ and the inner sum is $\binom{-2}{2k}=2k+1$ by the Chu-Vandermonde identity. Hence, $$F(x)=\sum_{k=1}^{\infty}(2k+1)\binom{2k}{k-1}x^{2k}=\sum_{k=1}^{\infty}k\binom{2k+1}{k}x^{2k}=x^2 G'(x^2),$$ where $$G(x)=\sum_{k=0}^\infty\binom{2k+1}{k}x^k=\frac{1}{2x}\left(\frac{1}{\sqrt{1-4x}}-1\right)$$ is computed like this, or by recognizing the binomial series, or another way known to you.

Related Question