Does uniform convergence of series hold on unbounded interval

sequences-and-seriesuniform-convergence

My question is about uniform convergence of the series (1) $\sum_{n=1}^\infty f_n(x)$ and (2) $\sum_{n=1}^\infty |f_n(x)|$ for $0 < x < \infty$ and $f_n(x) = \frac{x \sin(n)}{x^2 + n^2}.$

I was able to prove uniform convergence for the first without absolute value by Abel-Dirichlet. For the second I showed

$$\frac{|x||\sin(n)|}{x^2 + n^2} \leq \frac{|x|}{n^2} \leq \frac{A}{n^2}.$$

So by Weierstrass test there is uniform convergence for all $0 < x < A$.

But what if $x$ lies in the unbounded interval $(0,\infty)$? I am unable to confirm or refute uniform convergence of (2) in this case.

Best Answer

The series (2) is not uniformly convergent for $x \in (0,\infty)$.

We have

$$\begin{align}\sup_{x \in (0,\infty)}\left|\sum_{k=n+1}^\infty \frac{x}{x^2 + k^2}|\sin k|\right| &\geqslant \sup_{x \in (0,\infty)}\sum_{k=n+1}^{2n} \frac{x}{x^2 + k^2}|\sin k| \\ &\geqslant \sup_{x \in (0,\infty)}\frac{x}{x^2 + 4n^2}\sum_{k=n+1}^{2n} |\sin k|\\ &\geqslant\frac{n}{n^2 + 4n^2}\sum_{k=n+1}^{2n} |\sin k|\end{align}$$

Using $|\sin k| \geqslant \sin^2k = (1- \cos 2k)/2$, it follows that

$$\sup_{x \in (0,\infty)}\left|\sum_{k=n+1}^\infty \frac{x}{x^2 + k^2}|\sin k|\right| \geqslant \frac{1}{5}\left(\frac{1}{2}- \frac{1}{2n}\sum_{k=n+1}^{2n} \cos 2k\right)$$

The RHS converges to $1/10 \neq 0$ as $n \to \infty$ since the sum over $\cos 2k$ is bounded for all $n$. Hence, the convergence is not uniform for $x \in (0,\infty)$ by violation of the uniform Cauchy criterion.