Does Nullspace(A) = Nullspace(C) imply Nullspace(AB) = Nullspace(CB)

linear algebramatrices

I recently thought of the following linear algebra statement:

For arbitrary matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$, we have
$ \mathcal{N}(A) = \mathcal{N}(C) \implies \mathcal{N}(AB) = \mathcal{N}(CB) $

Is this statement correct?

I came up with the following proof attempt:

Assume $\mathcal{N}(A) = \mathcal{N}(C)$. Then,
\begin{equation} \label{eq1}
\begin{split}
x\in\mathcal{N}(AB) & \iff x\in\left(\mathcal{N}(B) + \left(\mathcal{N}(A)\cap\mathcal{C}(B)\right)\right) \\
& \iff x\in\left(\mathcal{N}(B) + \left(\mathcal{N}(C)\cap\mathcal{C}(B)\right)\right) \\
& \iff x\in\mathcal{N}(CB).
\end{split}
\end{equation}

Is this proof correct?

(I denote nullspaces and column spaces with $\mathcal{N}$ and $\mathcal{C}$, respectively.)

Best Answer

It’s not true that $\mathcal{N}(AB) = \mathcal{N}(B) + \bigl(\mathcal{N}(A) \cap \mathcal{C}(B)\bigr)$. For one, if the matrices aren’t square, then these vector subspace operations might not be able to be performed due to differing underlying spaces.

A more appropriate equivalence is $x \in \mathcal{N}(AB) \iff Bx \in \mathcal{N}(A)$. From which it follows that

$$\begin{align} x \in \mathcal{N}(AB) &\iff Bx \in \mathcal{N}(A) \\ &\iff Bx \in \mathcal{N}(C) \\ &\iff x \in \mathcal{N}(CB), \end{align} $$

whenever $\mathcal{N}(A) = \mathcal{N}(C)$.

Related Question