Does $f(t,x)=tx^2-tx$ satisfy Lipschitz condition

functionslipschitz-functionsnormed-spacesreal-analysisuniform-continuity

I have function $f: [0,T] \times \mathbb{R} \rightarrow \mathbb{R}$, $T \in \mathbb{R_+}$
$$f(t,x)=tx^2-tx$$
I want to check if it satisfies Lipschitz condition and I got
$$|f(t_1, x_1)-f(t_2, x_2)|=|t_1x_1^2-t_1x_1-t_2x_2^2+t_2x_2| \leq T |x_1^2-x_2^2 -(x_1-x_2)|= \\T |x_1+x_2-1||x_1-x_2| \leq T |x_1+x_2-1|(|t_1-t_2|+|x_1-x_2|)$$
and I guess since $x_1, x_2$ are real then $|x_1+x_2-1|$ is unbounded so it doesn't satisfy Lipschitz condition.
Is this enough of a proof though?
I thought of checking if this function is uniformly continuos but coudn't quite get anywhere.

Best Answer

No, this is not enough. What you should be trying to prove is that for every $K > 0$ there exist $(t_1,x_1)$ and $(t_2, x_2) \in [0,T]\times \mathbb{R}$ such that $$ |f(t_1,x_1) - f(t_2,x_2)| > K|(t_1, x_1) - (t_2, x_2)|. $$

For that, pick $(t_1, x_1) = (T, x + 1)$ and $(t_2, x_2) = (T, x)$. Then

$$ |f(T, x+1) - f(T, x)| = T|(x+1)^2 - (x+1) - (x^2-x)| = T|2x| > K|(T, x+1) - (T, x)| $$ for $x$ large enough.

Related Question