Does $\dot{\theta}^2=-\frac{g}{l}\cos\theta\iff\ddot{\theta}=-\frac{g}{l}\sin\theta$ holds? (Simple pendulum problem)

ordinary differential equationsphysics

simple pendulum

I solved a simple pendulum problem as follows (please see the above figure):

By the Newton's second law,

$$m\ddot{\vec{r}}=-ml\dot{\theta}^2\begin{pmatrix}\cos\theta \\ \sin\theta\end{pmatrix}+ml\ddot{\theta}\begin{pmatrix}-\sin\theta \\ \cos\theta\end{pmatrix}=mg\cos\theta\begin{pmatrix}\cos\theta \\ \sin\theta\end{pmatrix}-mg\sin\theta\begin{pmatrix}-\sin\theta \\ \cos\theta
\end{pmatrix}.$$

From this equation, we get the following two differential equations:
$\dot{\theta}^2=-\frac{g}{l}\cos\theta.$
$\ddot{\theta}=-\frac{g}{l}\sin\theta.$

If $\theta$ satisfies $\dot{\theta}^2=-\frac{g}{l}\cos\theta$, then does $\theta$ satisfy $\ddot{\theta}=-\frac{g}{l}\sin\theta$?
If $\theta$ satisfies $\ddot{\theta}=-\frac{g}{l}\sin\theta$, then does $\theta$ satisfy $\dot{\theta}^2=-\frac{g}{l}\cos\theta$?

Best Answer

Mathematically, not really.

I noticed that your formula for pendulum is not correct. You might mean these: $$\frac{\dot{\theta}^2}{2} = \frac{g}{l} \cos(\theta)$$ and $$\ddot{\theta} = -\frac{g}{l} \sin(\theta)$$

The trivial counterexample is $\theta \equiv \pi /2$, where $\dot{\theta}^2/2=\frac{g}{l}\cos\theta = 0$ but $\ddot{\theta}=0 \ne -\frac{g}{l}\sin\theta$.

In that case, you may assume that $\theta$ is not a constant.

By taking derivative, you get $\ddot{\theta}\dot{\theta}=\frac{g}{l}\sin\theta \dot{\theta}$ and you can cancel $\dot{\theta}$ because $\theta$ is not a constant, then you get $\ddot{\theta} = -\frac{g}{l}\sin\theta$. However, if you have $\ddot{\theta} = -\frac{g}{l}\sin\theta$, then you can't get $\frac{\dot{\theta}^2}{2} = \frac{g}{l} \cos(\theta)$, because actually $\frac{\dot{\theta}^2}{2} = \frac{g}{l} \cos(\theta) + C$.

Related Question