Divergence of $\int_0^{\infty}e^{ax}\ x^b \ dx$.

calculusimproper-integralsreal-analysis

I want to prove
$$\displaystyle\int_0^{\infty}e^{ax}\ x^b \ dx \ (a,b\in \mathbb R)$$ diverges if $a\geqq 0$.

Let $a\geqq 0.$

$$\int_0^{\infty}e^{ax}\ x^b \ dx
=\underline{\int_0^{1}e^{ax}\ x^b \ dx}_{=I_1} + \underline{\int_1^{\infty}e^{ax}\ x^b \ dx}_{=I_2}.$$

If $b\geqq 0,$ then
\begin{align}
I_2=\int_1^{\infty} e^{ax}\ x^b \ dx
&\geqq \int_1^{\infty} e^{ax} \ dx=\infty.
\end{align}

Thus $\displaystyle\int_0^{\infty}e^{ax}\ x^b \ dx$ diverges.

I cannot prove the case of $b<0$. How should I evaluate $I_1$ or $I_2$ ?

Best Answer

If $a=0$ then $\int_0^\infty e^{ax} x^b \, dx$ diverges because (at least) one of the integrals $$ I_1 = \int_0^1 x^b \, dx \, , \quad I_2 = \int_1^\infty x^b \, dx $$ diverges. ($I_1$ diverges if $b \le -1$, and $I_2$ diverges if $b \ge -1$.)

If $a > 0$ then choose an integer $k$ with $k+b > 0$, so that $$ e^{ax} x^b \ge \frac{(ax)^k}{k!} x^b = \frac{a^k}{k!} x^{k+b} \, . $$ This implies the divergence of $\int_1^\infty e^{ax} x^b \, dx$. (This works for all values of $b$.) Roughly speaking, we are using that the exponential function “grows faster than any polynomial” for $x \to \infty$.

Related Question