Distribution of a division of two absolutely continuous random variables

probabilityprobability distributionsrandom variables

Assume $Z,Y $ are independent standard normal random variables.

Find the distribution of $ Z/Y $.

The answer is that $ Z/Y $ is absolutely continuous random variable with density

$$ f_{\frac{Z}{Y}}(x)=\frac{1}{\pi(1+x^2)} $$

Here's what I don't understand:

I tried to write:

\begin{align}
F_{\frac{Z}{Y}}(t) & =\mathbb{P}\left(\frac{Z}{Y}\leq t\right)=\mathbb{P}\left(\frac{Z}{Y}\leq t\cap Y<0\right)+\mathbb{P}\left(\frac{Z}{Y}\leq t\cap Y>0\right) \\[8pt]
& =\mathbb{P} (Z\geq tY\cap Y<0)+\mathbb{P}\left(Z\leq tY\cap Y>0\right) \\[8pt]
& =\mathbb{P}(Z\geq tY) \mathbb{P}(Y<0)+\mathbb{P}(Z\leq tY) \mathbb{P}(Y>0) \\[8pt]
& =\frac{1}{2}\mathbb{P}(Z\geq tY)+\frac{1}{2}\mathbb{P} (Z\leq tY)
\end{align}

And then to calculate each term. for example :

$$ \mathbb{P}(Z\leq tY)=\mathbb{P} ((Z,Y)\in \{ (z,y):z\leq ty \} ) = \intop_{-\infty}^\infty \intop_{-\infty}^{ty} \frac{1}{2\pi} e^{-\frac{z^2+y^2}{2}} \, dz\, dy $$

But this leads me to a wrong answer, and I'm pretty sure that the problem is somewhere in what I wrote before.

Any help would be appreciated, thanks in advance.

Best Answer

Let $W:=(Y,Z)$, then as $Y$ and $Z$ are independent $f_W=f_Y\cdot f_Z$, therefore for $A_c:=\{(s,t)\in \mathbb{R}^2 :s/t\leqslant c\}$ we have that

$$ \begin{align*} \Pr [Z/Y\leqslant c]&=\Pr [W\in A_c]\\&=\int_{\mathbb{R}^2}\mathbf{1}_{A_c}(s,t)f_Y(s)f_Z(t)\mathop{}\!d(s,t)\\ &=\frac1{2\pi }\left(\int_{(0,\infty )}e^{-t^2/2}\int_{(-\infty ,tc]}e^{-s^2/2}\mathop{}\!d s \mathop{}\!d t+\int_{(-\infty ,0)}e^{-t^2/2}\int_{[tc,\infty )}e^{-s^2/2}\mathop{}\!d s \mathop{}\!d t\right) \end{align*} $$ Differentiating respect to $c$ gives $$ f_{Z/Y}(c)=\frac1{2\pi}\left(\int_{(0,\infty )}te^{-\frac1{2}(1+c)^2t^2}\mathop{}\!d t-\int_{(-\infty ,0)}te^{-\frac1{2}(1+c)^2t^2}\mathop{}\!d t\right)\\ =\frac1{\pi }\int_{(0,\infty )}te^{-\frac1{2}(1+c)^2t^2}\mathop{}\!d t=\frac1{\pi(1+c^2)} $$


EDIT: alternatively, using the change to polar coordinates $(t,s)=(r\cos \alpha ,r\sin \alpha )$ we have that the condition $s/t\leqslant c$ is equivalent to $\tan \alpha \leqslant c \Rightarrow -\pi/2<\alpha \leqslant \arctan c$, and as the tangent have two full periods on $(-\pi,\pi)$ then

$$ \int_{\mathbb{R}^2}\mathbf{1}_{A_c}(s,t)f_Y(s)f_Z(t)\mathop{}\!d(s,t)=\frac1{\pi }\int_{[0,\infty )\times (-\pi/2,\arctan c]}re^{-r^2/2}\mathop{}\!d (r,\alpha ) =\frac1{\pi}(\arctan c+\frac{\pi}{2}) $$

where the result follows again by differentiation.