Distance Between Two Sets Different from Zero – Real Analysis

hausdorff-distancelimitsreal-analysissequences-and-series

Consider these sets
$$
A\equiv \bigcap_{\delta>0} \liminf_{n\rightarrow \infty} \{x \in X: d(p_n, [\ell(x), u(x)])\leq \delta\}
$$

$$
A_n\equiv \{x \in X: d(p_n, [\ell(x), u(x)])=0\}
$$

where:

  • $A$ is non-empty.
  • $(p_n)_n$ is a sequence of reals taking values in $[0,1]$.
  • $\ell(\cdot)$ and $u(\cdot)$ are real function taking values in $(0,1)$ with $\ell<u$.
  • $d\big(p_n, [\ell(x), u(x) ] \big):= \inf \big\{|p_n – y| : y \in [\ell(x), u(x) ] \big\}$.

Let
$$
d_H(A, B)\equiv \max\{\sup_{x\in B}d(x,A), \sup_{x\in A}d(x, B)\},
$$

denote the Hausdorff distance. Can you give me a simple example of why $d_H(A,A_n)$ may be different from zero?

Best Answer

Given a sequence $(S_n)_{n\in\mathbb N}$ of sets, I assume that $$\liminf_{n\rightarrow \infty} S_n=\bigcup_{n\in\mathbb N} \bigcap_{m\ge n} S_m.$$

Let $X$ be the interval $[1/3,2/3]$ endowed with the usual metric $d$. For each $x\in X$ put $\ell(x)=x-1/6$ and $u(x)=x+1/6$. For each $n\in\mathbb N$ let $p_n=1/3$, if $n$ is odd, and $p_n=2/3$, if $n$ is even. Then for each natural $n$ we have $$A_n=\{x \in X: d(p_n, [\ell(x), u(x)])=0\}=$$ $$\{x \in [1/3,2/3]: x-1/6\le p_n\le x+1/6\}.$$ So $A_n=[1/3,1/2]$, if $n$ is odd and $A_n=[1/2,2/3]$, if $n$ is even.

Let $\delta\le 1/6$ be any positive number. Then for each natural $n$ we have $$\{x \in X: d(p_n, [\ell(x), u(x)])\le\delta\}=$$ $$\{x \in [1/3,2/3]: x-1/6-\delta\le p_n\le x+1/6+\delta\}.$$ The latter set is $[1/3,1/2+\delta]$, if $n$ is odd and $[1/2-\delta,2/3]$, if $n$ is even. Then $\liminf_{n\rightarrow \infty} \{x \in X: d(p_n, [\ell(x), u(x)])\leq \delta\}=[1/2-\delta,1/2+\delta]$, so $A=\{1/2\}$, and thus $d_H(A,A_n)=1/6$ for each natural $n$.

Related Question