$\displaystyle\int_0^\pi\sin^5\theta\cos^4\theta \,\mathrm d\theta=2\int_0^{\frac{\pi}{2}}\sin^5\theta\cos^4\theta \,\mathrm d\theta$

calculusdefinite integrals

My instructor wrote

$$\int_0^\pi\sin^5(\theta)\cos^4(\theta) \,\mathrm d\theta\tag{1}$$
$$=2\int_0^{\frac{\pi}{2}}\sin^5(\theta)\cos^4(\theta) \,\mathrm d\theta\tag{2}$$
$$=2\cdot\frac{\Gamma\left(\frac{5+1}{2}\right)\cdot\Gamma\left(\frac{4+1}{2}\right)}{2\cdot\Gamma\left(\frac{5+1}{2}+\frac{4+1}{2}\right)}\\=\frac{16}{315}.$$

How did he know that going from step $(1)$ to $(2)$ is valid? We can vaguely verify the step by checking the graph, which he had not seen.

Best Answer

We know that $$\int_0^{2a} f(x)dx=2\int_0^af(x)dx$$

if $f(a+x)=f(a-x)$
here $f(\theta)=\sin^5(\theta)\cos^4\theta$

Check $f(\pi/2+\theta)=f(\pi/2-\theta)$.

So, $$\int_0^{{2\cdot\frac{\pi}{2}}}\sin^5(\theta)\cos^4(\theta)d\theta=2\int_0^{\pi/2}\sin^5(\theta)\cos^4(\theta)d\theta$$

Rest is just application of Walli's formula.