Digits sums and sum of power

elementary-number-theorynumber theorypolynomials

Let $D(x,v)$ be the function defined as, sum of digits of $v$ in base $x$.

Example: $D(2,7)=3$

Can it be shown that

If
$$ n_0^m+n_1^m+\cdots+n_u^m =a^b, $$
where $n_0,n_1,\ldots,n_u,m,u,a$ and $b$ are positive integers with $m>1$ , then $\gcd(n_0,n_1,\ldots,n_u,a)\mid \gcd(D(a+1,n_0^{m}),D(a+1,n_1^{m}),\ldots,D(a+1,n_u^{m})$ ?

Example

Let $3^3+24^3+45^3=18^4$

So $D(19,3^3)=9,D(19,24^3)=18,D(19,45^3)=27$

See $\gcd(3,24,45,18)\mid\gcd(D(19,3^3),D(19,24^3),D(19,45^3))$

Update claim

If
$$ n_0^{m_0}+n_1^{m_1}+\cdots+n_u^{m_u} =a^b, $$
where $n_0,n_1,\ldots,n_u,m_0,m_1,\ldots,m_u,a,b$ and $u$ are positive integers with $\{m_0,m_1,\ldots,m_u\}>1$ , then $\gcd(n_0,n_1,\ldots,n_u,a)\mid \gcd(D(a+1,n_0^{m_0}),D(a+1,n_1^{m_1}),\ldots,D(a+1,n_u^{m_u})$ ?

Example

Let $63^2+6^6=225^2$

So $D(226,63^2)=144,D(226,6^6)=306$

See $\gcd(63,6,225)\mid\gcd(D(226,63^2),D(226,6^6))$


Python programme to calculate $D$ function.

    n1=19
    n2=45**3
    rem_array = []
    while n2 != 0:
        mod = n2%n1
        if mod != 0:
          rem = mod
          n2 = n2 - rem
          rem_array.append(round(rem))
          n2=n2/n1
        else:
            n2 = n2/n1
            rem_array.append(0)
    print(rem_array[::-1])
    print("D(n1,n2)=",sum(rem_array))

Best Answer

In any base $b$, we can see that a number is of the form $a=\sum d_ib^i$ for digits $d_i$. We also know that $b^i \equiv 1 \pmod{b-1}$. Thus, we can conclude that in base $b$, the sum of the digits of a number $a$ leaves the same remainder as $a$, when divided by $b-1$. In notation- $$a \equiv D(b,a) \pmod{b-1}$$ If we have $g=\gcd(n_0,n_1,\ldots,n_u,a)$, then we can see that $g \mid n_i^{m_i}$. We also know $$D(a+1,n_i^{m_i}) \equiv n_i^{m_i} \pmod{a} \implies g \mid D(a+1,n_i^{m_i})$$ because $g$ divides both $n_i^{m_i}$ and $a$. Since $g$ divides all of $D(a+1,n_i^{m_i})$, it divides their greatest common divisor. This concludes the proof.

Related Question