Different ways of proving that $|\sum^{\infty}_{k=1}(1-\cos(1/k))|\leq 2 $

analysisconvergence-divergencereal-analysisuniform-convergence

I've found two ways of proving that
\begin{align} \left|\sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]\right|&\leq 2 \end{align}
Are there any other ways out there, for proving this?

METHOD 1

Let $k\in \Bbb{N}$, then

\begin{align} f:[ 0&,1]\longrightarrow \Bbb{R}\\&x \mapsto
\cos\left(\dfrac{x}{k}\right) \end{align}

is continuous. Then, by Mean Value Theorem, there exists $c\in [ 0,x]$ such that
\begin{align} \cos\left(\dfrac{x}{k}\right)-\cos\left(0\right) =-\dfrac{1}{k}\sin\left(\dfrac{c}{k}\right)\,(x-0), \end{align}
which implies \begin{align} \left|\sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]\right| &=\left|\sum^{\infty}_{k=1}\dfrac{x}{k}\sin\left(\dfrac{c}{k}\right)\right| \leq \sum^{\infty}_{k=1}\dfrac{\left|x\right|}{k}\left|\sin\left(\dfrac{c}{k}\right)\right|\leq \sum^{\infty}_{k=1}\dfrac{\left|x\right|}{k}\dfrac{\left|c\right|}{k}\\&\leq \sum^{\infty}_{k=1}\left(\dfrac{\left|x\right|}{k}\right)^2\leq \sum^{\infty}_{k=1}\dfrac{1}{k^2}=1+ \sum^{\infty}_{k=2}\dfrac{1}{k^2}\\&\leq 1+ \sum^{\infty}_{k=2}\dfrac{1}{k(k-1)}\\&= 1+ \lim\limits_{n\to\infty}\sum^{n}_{k=2}\left(\dfrac{1}{k-1}-\dfrac{1}{k}\right)\\&=1+ \lim\limits_{n\to\infty}\left(1-\dfrac{1}{n}\right)\\&=2, \end{align}

METHOD 2

Let $x\in [0,1]$ be fixed, then
\begin{align} \sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]&=\sum^{\infty}_{k=1}\dfrac{1}{k}\left[-k\cos\left(\dfrac{x}{k}\right)\right]^{1}_{0}=\sum^{\infty}_{k=1}\dfrac{1}{k}\int^{1}_{0}\sin\left(\dfrac{x}{k}\right)dx \\&=\sum^{\infty}_{k=1}\int^{1}_{0}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx \end{align}
The series $\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)$ converges uniformly on $[0,1]$, by Weierstrass-M test, since
\begin{align} \left|\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right) \right|\leq \sum^{\infty}_{k=1}\dfrac{1}{k}\left|\sin\left(\dfrac{x}{k}\right) \right|\leq \sum^{\infty}_{k=1}\dfrac{1}{k^2}. \end{align}
Hence,
\begin{align} \sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]&=\sum^{\infty}_{k=1}\int^{1}_{0}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx=\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx, \end{align}
and
\begin{align} \left|\sum^{\infty}_{k=1}\left[1-\cos\left(\dfrac{1}{k}\right)\right]\right|&=\left|\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k}\sin\left(\dfrac{x}{k}\right)dx\right|\leq\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k}\left|\sin\left(\dfrac{x}{k}\right)\right|dx \\&\leq\int^{1}_{0}\sum^{\infty}_{k=1}\dfrac{1}{k^2}dx \\&\leq 2 \end{align}

Best Answer

Using the Maclaurin series for $\cos$, your sum is $$S = \sum_{k=1}^\infty \sum_{j=1}^\infty \frac{(-1)^{j+1}}{(2j)!\; k^{2j}}$$ This converges absolutely, and $$ |S| \le \sum_{j=1}^\infty \sum_{k=1}^\infty \frac{1}{(2j)!\; k^{2j}} = \sum_{j=1}^\infty \frac{\zeta(2j)}{(2j)!} \le \sum_{j=1}^\infty \frac{\zeta(2)}{(2j)!} =\frac{(\cosh(1)-1) \pi^2}{6} < 2$$ (in fact $< 0.9$).

Related Question