Determine all possible integers $x$ and $y$ s.t. $3x + 7y \equiv 14 \pmod{28}$ and $x + 3y \equiv 8 \pmod{28}$.

elementary-number-theorymodular arithmetic

Determine all possible ints $x$ and $y$ that satisfy $3x + 7y \equiv 14 \pmod {28}$ and $x + 3y \equiv 8 \pmod {28}$. The answer should be in terms of $x\equiv r$ and $y \equiv s$ where $r$ and $s$ are remainders.

Here is what I have tried. Am I headed in the right direction?

$8\cdot (3x + 7y) \equiv 14 \pmod {28}$ and $14 \cdot (x + 3y) \equiv 8 \pmod {28}$

$24x + 56y \equiv 112 \pmod{ 28}$ and $14x + 42y \equiv 112 \pmod {28}$

$24x + 56y \equiv 14x + 42y \pmod {28}$

This is where I start to get unsure,

$24x + 28y + 28y \equiv 14x + 14y + 28y \pmod {28}$

$24x \equiv 14x + 14y \pmod {28}$

$48x \equiv 28x + 28y \pmod {28}$

So then…?

$20x \equiv 1 \pmod {28}$?

Stuck here. Is this even the right idea?

Best Answer

We have \begin{eqnarray*} 3x+7y \equiv 14 \pmod{28} \\ x+3y \equiv 8 \pmod{28}. \end{eqnarray*} Multiply the second equation by $3$ and then subtract the first \begin{eqnarray*} 3x+9y \equiv 24 \pmod{28} \\ 2y \equiv 10 \pmod{28}. \end{eqnarray*} So \begin{eqnarray*} y &\equiv 5 \pmod{28} \\ x & \equiv 21 \pmod{28} \end{eqnarray*} or\begin{eqnarray*} y &\equiv 19 \pmod{28} \\ x & \equiv 7 \pmod{28}. \end{eqnarray*}

Related Question