Determine all pairs$ (P, d)$ of a polynomial $P$ with integer coefficients

number theorypolynomials

Determine all pairs$ (P, d)$ of a polynomial $P$ with integer coefficients and an integer $d$ such
that the equation $P(x)−P(y) = d$ has infinitely many
solutions in integers $x$ and $y$ with $x \ne y$,

I think d has to equal zero for there to be infinite solutions but im not sure

Also I know that d is divisible by $x-y$ because the difference between the polynomials results in a multiple of $x-y$

from the 2017 SAMO senior round 3
http://www.samf.ac.za/content/files/QuestionPapers/s3q2017.pdf

Best Answer

For $P\in\mathbb{Z}[t]$ and $d\in\mathbb{Z}$, let $S(P,d)$ be the set of pairs $(x,y)$ of distinct integers such that $P(x)-P(y)=d$.

The goal is to find all pairs $(P,d)$ such that $S(P,d)$ is infinite.

I'll give a solution for the case $d\ne 0$, and a partial solution for the case $d=0$ . . .

Case $(1)$:$\;d\ne 0$.

Thus, let $d$ be a nonzero integer, and let $K$ be the set of integer divisors of $d$.

Claim:$\;S(P,d)$ is infinite if and only if $P=at+b$ for some integer $b$ and some $a\in K$.

First suppose $P=at+b$ for some integer $b$ and some $a\in K$.

Write $d=ak$, for some $k\in K$.

Then for $x,y\in\mathbb{Z}$, we have \begin{align*} &P(x)-P(y)=d \qquad\qquad\qquad\qquad\qquad\qquad \\[4pt] \iff\;&(ax+b)-(ay+b)=d\\[4pt] \iff\;&a(x-y)=d\\[4pt] \iff\;&x-y=k\\[4pt] \end{align*} hence $(y+k,y)\in S(P,d)$ for all integers $y$, so $S(P,d)$ is infinite.

Conversely, suppose $S(P,d)$ is infinite.

Then for $x,y\in\mathbb{Z}$ with $x\ne y$, \begin{align*} &P(x)-P(y)=d \qquad\qquad\qquad\qquad\qquad\qquad \\[4pt] \implies\;&(x-y){\,\mid\,}d\\[4pt] \implies\;&x=y+k,\;\text{for some}\;k\in K\\[4pt] \end{align*} Since $S(P,d)$ is infinite and $K$ is finite, it follows that there is some $k\in K$ such that the equation $$ P(y+k)-P(y)=d \qquad\qquad\qquad\qquad $$ holds for infinitely many integers $y$.

Then letting $f\in\mathbb{Z}[t]$ be given by $f(t)=P(t+k)-P(t)-d$, we get that $f$ has infinitely many zeros, hence $f$ must be identically $0$. \begin{align*} \text{Then}\;&f=0\\[4pt] \implies\;&P(t+k)-P(t)-d=0\\[4pt] \implies\;&P'(t+k)-P'(t)=0\\[4pt] &\;\;\;\text{[where $P'\in\mathbb{Z}[t]$ is the formal derivative of $P$]}\\[4pt] \implies\;&P'=a,\;\text{for some integer}\;a\\[4pt] \implies\;&P=at+b,\;\text{for some integers}\;a,b\\[4pt] \end{align*} Then letting $x,y$ be distinct integers such that $P(x)-P(y)=d$, we get \begin{align*} &P(x)-P(y)=d\\[4pt] \implies\;&(ax+b)-(ay+b)=d \qquad\qquad\qquad\qquad\qquad \\[4pt] \implies\;&a(x-y)=d\\[4pt] \implies\;&a\in K\\[4pt] \end{align*} so $P=at+b$ for some integer $b$ and some $a\in K$, as claimed.

This completes the analysis for case $(1)$.

Case $(2)$:$\;d=0$.

For this case, I'll identify a class of polynomials $f\in\mathbb{Z}[t]$ such that $S(f,0)$ is infinite, and I'll conjecture that there are no others.

Let $V$ be the set of all polynomials $f\in\mathbb{Z}[t]$ such that $S(f,0)$ is infinite.

Some properties of the set $V$ . . .

Property $(0)$:$\;$If $f\in\mathbb{Z}[t]$ and $\deg(f)$ is odd, then $f\not\in V$.

Proof:$\;$Since $\deg(f)$ is odd, there exists $\theta\in (0,\infty)$ such that if $x,y\in\mathbb{R}$ with $x\ne y$ satisfy the equation $f(x)=f(y)$, then $x,y\in (-\theta,\theta)$.

Thus $(x,y)\in S(f,0)$ implies $x,y\in (-\theta,\theta)$, hence $S(f,0)$ is finite, so $f\not\in V$.

Property $(1)$:$\;t^2\in V$.

Proof:$\;$For all nonzero integers $y$, we have $(-y,y)\in S(t^2,0)$, hence $S(t^2,0)$ is infinite, so $t^2\in V$.

Property $(2)$:$\;t^2+t\in V$.

Proof:$\;$Let $f=t^2+t$.

Let $y\in\mathbb{Z}$ and let $x=-y-1$.

Then we have $x\ne y$ and $$f(x)=x^2+x=(-y-1)^2+(-y-1)=(y^2+2y+1)-(y+1)=y^2+y=f(y)$$ thus for all $y\in\mathbb{Z}$, we have $(-y-1,y)\in S(t^2+t,0)$, hence $S(f,0)$ is infinite, so $t^2+t\in V$.

Property $(3)$:$\;$If $f\in V$, then $f(t+a)\in V$ for all $a\in\mathbb{Z}$.

Proof:$\;$Let $a\in\mathbb{Z}$ and let $g=f(t+a)$.

Then $(x,y)\in S(f,0)$ implies $(x-a,y-a)\in S(g,0)$, hence $S(g,0)$ is infinite, so $g\in V$.

Property $(4)$:$\;$If $f\in V$ and $g\in\mathbb{Z}[t]$, then $g\circ f\in V$.

Proof:$\;$Let $(x,y)\in S(f,0)$. \begin{align*} \text{Then}\;\;&(x,y)\in S(f,0) \qquad\qquad\qquad\qquad\qquad\qquad\qquad \\[4pt] \implies\;&f(x)=f(y)\\[4pt] \implies\;&g(f(x))=g(f(y))\\[4pt] \implies\;&(g\circ f)(x)=(g\circ f)(y)\\[4pt] \implies\;&(x,y)\in S(g\circ f,0)\\[4pt] \end{align*} hence $S(g\circ f,0)$ is infinite, so $g\circ f\in V$.

Combining properties $(1),(2),(3),(4)$, we get

Property $(*)$:$\;$If $f=g\bigl((t+a)^2\bigr)$ or $f=g\bigl((t+a)^2+(t+a)\bigr)$ where $g\in\mathbb{Z}[t]$ and $a\in\mathbb{Z}$, then $f\in V$.

What about the converse of property $(*)$?

Conjecture:$\;$If $f\in V$, then for some $g\in\mathbb{Z}[t]$ and some $a\in\mathbb{Z}$, either $f=g\bigl((t+a)^2\bigr)$ or $f=g\bigl((t+a)^2+(t+a)\bigr)$.