Determine adjoint Operator in Hilbert space

adjoint-operatorsfunctional-analysishilbert-spaces

Let $S:L^{2}((0,1))\to L^{2}((0,1))$ be such that $(Su)(x)=\displaystyle\int_{0}^{x}y\,u(y)\,\text{d}y$. Determine the adjoint operator $S^{*}$ in the sense that $\langle Su,v\rangle = \langle u,S^{*}v\rangle$ for all $u,v\in L^{2}((0,1))\\$

I tried to begin on the left of the equation and use Fubini, but I couldn't find out $S^{*}$. Can anyone help me?

Best Answer

Your proposed method is perfectly fine. You need change the order of the integrals: $$ \langle Su, v \rangle = \int_0^1 dx \int_0^xdy \ y u(y) v(x) = \int_0^1 dy \int_y^1 dx \ y u(y) v(x) = \langle u, S^\star v\rangle. $$ So $$ (S^\star v)(y) = y\int_y^1 dx \ v(x). $$

Related Question